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In this supplementary, we present additional analysis re-
lated to our proposed test set WildVSR. Additional details
regarding the data collection are given in Section A fol-
lowed by additional results on ASR models and word-level
lip-reading in Section B. Finally, we present additional de-
tails regarding the training budget calculation for the VSR
models in Section C.

A. Additional Details on Data Collection

Keywords selection. In the course of our study, the tool
was configured to systematically extract video IDs from
YouTube, utilizing a predefined array of significant key-
words as the fundamental criteria for data selection. These
keywords, derived from diverse trending and popular the-
matic categories, directed the tool to gather data across a
wide spectrum of content. These keywords are: knowl-
edge, history, conference, beauty, dialogue, news, talk, in-
terview, sport, health, technology, conversation, cooking,
lesson, tips, reading, challenges, travel, course, games. As
such, this comprehensive dataset provided a rich substrate
for our subsequent investigations, enabling a deeper under-
standing of the various parameters that govern the content
popularity on the platform.
Similarity measures. As shown in Figure A.1, the similar-
ity across our test set is relatively low (visually represented
by darker colors in the matrix) signifing that the embeddings
produced by the VGG-Face model are notably distinct for
different test set images. This in turn implies that the VGG-
Face model has successfully captured a wide array of facial
feature representations, making it capable of distinguish-
ing between different individuals effectively. Moreover, the
high diversity within the similarity matrix also indicates that
the models are fairly tested without a specific focus on a
given facial category.

B. Additional Results

ASR models: We benchmark the Wav2Vec2.0 [1] and
Whisper [8] on both LRS3 and our test sets. Wav2vec2.0

Figure A.1. The similarity matrix of the face embeddings using
VGG-Face across the test set samples. It can be seen that the sim-
ilairy is low across our test set, showing the diversity.

achieved 6.2 and 23.4 WER scores on both datasets respec-
tively. In comparison, Whisper exhibits even higher perfor-
mance with scores less than 4 WER on both test sets. These
low WER scores signify the models’ ability to accurately
transcribe speech, capturing the spoken words with remark-
able precision. Moreover, the small standard deviation ob-
served for both models suggests that their performance is
consistently reliable, with minimal variation in recognition
errors across different samples. However, Wav2vec2.0 fol-
lows the same trend as VSR models on our test set, deviat-
ing by 12 WER points from the LRS3 score. This discrep-
ancy while not being attributed to visual features responsi-
ble for VSR models performance, is more likely to be in-
fluenced by the sequence of phonemes in our test set. It is
possible that the transcriptions in our test set contain more
challenging or complex sequences of phonemes, which may
pose difficulties for the VSR models and result in a drop
in their performance. Unlike Whisper, Wav2vec2.0 relies
solely on character-level CTC decoding without the use of
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Figure A.2. Qualitative results. The predictions of the Wav2vec2.0 and Auto-AVSR models on sample sequences from our test set.
Wav2Vec2.0 mostly makes errors in terms of near-by homophones, e.g., PARATON vs. PERITON in 2nd row, LIKE POOR vs. LUDPORE
in 4th row. In comparison, the state-of-the-art VSR framework Auto-AVSR predictions deviate significantly from the target speech, e.g.,
SPORTING BUSINESS vs. THERE IS BOARDING BUSES in 1st row.

any language model to ensure valid word predictions. This
lack of language modeling support in Wav2vec2.0 could
contribute to its higher WER on our test set. Projecting on
VSR approaches, we hypothesize that factors beyond visual
features alone, such as the sequence of phonemes in our test
set are also likely to contribute to the drop in performance.

B.1. WildVSR-Word

To transform our sentence-level test set into a word-level
format akin to the LRW (Lip Reading in the Wild) dataset
[2], we followed a systematic process. The objective was
to ensure that the selected word segments were not only
contextually relevant but also well-aligned with the LRW
classes.

• Whisper [8] Word Boundaries: The primary challenge
in transitioning from sentence to word level lies in
identifying accurate word boundaries within continu-
ous spoken sentences. To address this, we made use of
whisper word boundaries. These boundaries provided
a reliable temporal localization of individual words
within the sentences, allowing us to select the start and
end times of each word.

• LRW Class Overlap: Given that our aim is to align
with the LRW word classes, we performed a filtering
operation on the identified word boundaries. Only the
words which overlap with the LRW class vocabulary
were retained for the next steps. This ensured that our
WILDVSR-Word dataset is directly comparable and
compatible with existing LRW models.

• Central Frame Extraction: To maintain consistency
and ensure the best representation of each word, we
centered the segment on the midpoint timestamp of
each selected word boundary. From this center point,

Table A.1. Performance comparison on word-level VSR.

Model Test sets
LRW WildVSR-W

DCTCN/Boundary [7] 92.1 34.6
DCTCN [7] 89.6 32.5
MSTCN [7] 88.9 29.6

we cropped video segments to obtain a fixed length of
29 frames. This length was chosen to comply with the
LRW creation process.

As shown in Table A.1, we tested models from [7] on
the resulting dataset, termed ”WILDVSR-Word”. In fact,
we observe a similar drop in accuracy as in sentence-level
VSR. The DCTCN drops by 60.0 points, this confirms the
generalization issues of VSR models for both sentence and
word level.

C. Additional Details on FLOPs Computation
Here, we detail the approach employed for calculating

the training budget (FLOPs) of the VSR/AVSR models in
Table. 2 of the main paper. As discussed in Sec. 4 of the
paper, we utilize the methodology described in [4] for es-
timating the compute budget. Accordingly, a transformer
model’s training compute for a single input token is approx-
imated to be 6N , where N denotes the number of model pa-
rameters. Briefly, it takes around 2N compute per token for
the forward pass (the backward pass is approximately twice
the compute as the forwards pass), resulting in a total of 6N
compute per token for a single forward-backward computa-
tion. Consequently, the total training compute required is
C = 6N ×D, where D denotes the total number of tokens
the model is trained on. For the task of visual speech recog-



Figure A.3. Visualization of the dominant spatial mode of the tucker decomposition over time of Auto-AVSR encoder representations
on LRS3 (in blue) and WildVSR (in red) test sets. It can be seen that when adding more samples, the LRS3 representations envelop the
WildVSR representations indicating that the salient modes of LRS3 are more compared to WildVSR.

nition, tokens refer to the number of input frames. Next,
we describe the calculations for different models reported
in Table. 2 of the main paper.

C.1. Fully-supervised Models

Ma et al. [6]: This model has a total of 52.5M parameters
and is trained on 1459 hours of video data for 50 epochs.
The 1459 hours correspond to 131.3M frames (i.e., 1459×
3600 seconds ×25 fps). Thus, the total compute required
for 50 epochs is 6× 52.5M ×(131.3M× 50), which results
in 2.1× 1018 FLOPs, i.e., 2.1 exaFLOPs.
Auto-AVSR [5]: This model has 250.1M parameters and
is trained for 75 epochs. There are three variants of the
model trained with different amount of data: 661, 1759 and
3448 hours, corresponding to 59.5M, 158.3M and 310.3M

frames, respectively. As a result, the total training compute
requirement for these 661, 1759 and 3448 hours variants
comes out as 6.7, 17.8 and 34.9 exaFLOPs, respectively.

C.2. SSL Pretrained and Finetuned Models

C.2.1 AV-HuBERT [9]

The AV-HuBERT model has multiple variants correspond-
ing to different model sizes and training data duration. The
Base model has encoder and decoder with 103.3M and
57.3M parameters, while the Large model has 325.4M and
151.9M parameters, respectively.

The Base model is pretrained for 5 iterations for 0.4M
steps on 32K frame tokens per step (32 GPUs with 1K frame
tokens per GPU). Differently, the Large model is initial-
ized from the Base model (after 4 iterations) and further



Table A.2. Training budget computation for RAVen [3] model variants. ‘ST’ refers to self-training, where finetuning is performed on
1759 hours of labeled and pseudo-labeled data. The different data regimes of 30, 433 and 1759 hours translate to 2.7M, 39M and 158.3M
frames, respectively. The encoder and decoder sizes are denoted by Ne and Nd. Note that encoder size is doubled for pretraining (2Ne)
due to the training of both audio and video encoders, while finetuning is with single encoder and decoder (Ne + Nd). Also see text in
Section C for more details.

Model Encoder Size Pretraining Decoder Size Finetuning Compute (exaFLOPS)
(M) epochs ×# Frames (M) (M) epochs ×# Frames (M) Pretraining Finetuning Total

Ne Dp Nd Df Cp = 6 · 2NeDp Cf = 6(Ne +Nd)Df C = Cp + Cf

Low-resource Setting
Base 433h 52.4 150 × 39 10.1 50 × 2.7 3.6 0.05 3.7
Base 1759h 52.4 150 × 158.3 10.1 50 × 2.7 14.9 0.05 14.9
Large 1759h 339.3 150 × 158.3 10.2 50 × 2.7 96.6 0.2 96.8
Large 1759h (w/ ST) 339.3 150 × 158.3 153.3 50 × 158.3 96.6 35.1 131.7

High-resource Setting
Base 433h 52.4 150 × 39 26.3 75 × 39 3.6 1.4 5.0
Base 1759h 52.4 150 × 158.3 26.3 75 × 39 14.9 1.4 16.3
Large 1759h 339.3 150 × 158.3 153.3 75 × 39 96.6 8.7 105.3
Large 1759h (w/ ST) 339.3 150 × 158.3 153.3 75 × 158.3 96.6 35.1 131.7

Table A.3. Performance comparison on our proposed test set with varying the attributes. We report the best variant per model.

Method Accent Gender Age Ethnicity
Native Non-Native Male Female Young Adult Old White Black Others

Auto-AVSR [5] 35.1 46.9 38.3 37.4 45.2 38.1 38.5 38.2 42.1 38.1
AV-HuBERT [9, 10] 47.5 55.3 49.2 47.7 52.0 48.4 48.7 48.5 50.0 48.4
RAVen [3] 45.2 55.0 47.5 45.3 54.5 46.4 47.3 46.2 48.7 47.3
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Figure A.4. Model performance on LRS3 vs. WildVSR. Each
data point corresponds to one model in ones we used in the main
results. The plots reveal two main phenomena: (i) There is a sig-
nificant drop in accuracy from LRS3 to WildVSR. (ii) The model
WERs closely follow a linear function with slope greater than 1
(1.30). This means that every WER decrease on LRS3 translates
into more than one WER point on the new WildVSR test set.

pretrained for 1 iteration for 0.6M steps on 64K frame to-
kens per step (64 GPUs with 1K frame tokens per GPU).
Consequently, pretraining the Base model for one iteration
involves 6× 103.3M × (0.4M × 32K) FLOPs, equal to 7.9
exaFLOPs. Similarly, pretraining the Large model for one

iteration involves 6×325.4M×(0.6M×64K) FLOPs, equal
to 74.9 exaFLOPs. As a result, Base model pretraining on
5 iterations takes 39.6 exaFLOPs, while the Large model
pretraining (4 base iterations followed by 1 large iteration)
requires 106.6 exaFLOPs.

During finetuning in low-resource setting (30 hours),
only the decoder is trained for 18K steps with 8K frame
tokens per step (8 GPUs at 1K frames per GPU). Thus,
finetuning the Base model in low-resource setting takes
6 × 57.3M × (18K × 8K) FLOPs, equivalent to 0.05
exaFLOPs. Similarly, finetuning the Large model takes
6×151.9M×(18K×8K), resulting in 0.13 exaFLOPs. As a
result, combining both pretraining and finetuning compute
requirements, in the low-resource setting, Base and Large
models require 39.7 and 106.7 exaFLOPs, respectively.

In contrast, in the high-resource setting (433 hours), the
encoder is trained for 22.5K steps while the decoder is
trained for 45K steps with 8K frame tokens per step. Thus,
finetuning the Base model in high-resource setting needs
6 × [(103.3M × (22.5K × 8K) + 57.3M × (45K × 8K)]
FLOPs, equivalent to 0.23 exaFLOPs. Similarly, finetuning
the Large model takes 6 × [(325.4M × (22.5K × 8K) +
151.9M × (45K × 8K)], equal to 0.7 exaFLOPs. Con-
sequently, adding both pretraining and finetuning compute
requirements, in the high-resource setting, Base and Large
models require 39.9 and 107.3 exaFLOPs, respectively.



C.2.2 RAVen [3]

The RAVen model has Base and Large variants trained
on different data regimes in the pretraining and finetuning
stages. The Base model for low-resource setting has 52.4M
and 10.1M parameters in the encoder and decoder. For Base
model in high-resource, the encoder is same while the de-
coder is larger at 26.3M parameters. Similarly, the Large
model in low-resource setting has 339.3M and 10.2M pa-
rameters for encoder and decoder. While the Large model
in high-resource setting has 339.3M and 153.3M parame-
ters for encoder and decoder. The self-trained variant has
same sizes as Large variant in high-resource setting. Also,
it is important to note that the pretraining involves train-
ing the audio and video encoders together (i.e., twice the
encoder parameters 2Ne) and finetuning utilizes a single
encoder and decoder (Ne + Nd). Furthermore, while 150
epochs are used during pretraining for all models, the low-
resource and high-resource models are finetuned for 50 and
75 epochs, respectively. The different data regimes of 30,
433 and 1759 hours translate to 2.7M, 39M and 158.3M
frames, respectively.

Table A.2 reports the compute required for different vari-
ants of the RAVen model. The Base model pretrained on
433 hours in low-resource setting (30 hour finetuning) uti-
lizes 6× (2× 52.4M)× 39M × 150 FLOPs for pretraining
and 6 × (52.4 + 10.1)M × 2.7M × 50 FLOPs for finetun-
ing, resulting in 3.7 exaFLOPs in total. Similarly, the Large
model pretrained on 1759 hours and finetuned on 433 hours
(high-resource) requires 6×(2×339.3M)×(158.3M×150)
FLOPs for pretraining and 6× (339.3+153.3)M× (39M×
75) FLOPs for finetuning, i.e., a total of 105.3 exaFLOPs.
Furthermore, since self-training involves pseudo-labeling
the unlabeled data and utilizing them during finetuning, all
1759 hours are used for finetuning. Consequently, self-
trained Large models require 35.1 exaFLOPs during fine-
tuning, resulting in 126.1 exaFLOPs requirement for the
entire training.
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