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Figure 1. The proposed PMMD results on out-of-distribution (unseen scenarios) images. Since no GT mesh is available, only PMMD
meshes are displayed in Front View | Top View | Side View of the camera 3D coordinate. The Predicted Dethmaps are displayed in the last
column. PMMD is robust to the person in the side profile, with truncated legs, and in the wild fields.

1. Additional Visualizations

The proposed PMMD against GT in the 360-degree
view. Most existing works visualize detected meshes as 2D
image-space projections or in a pseudo 3D space induced by
weakly prospective assumption. The 2D-image-space vi-
sualization obscures incorrect mesh scaling and translation
along the depth direction. The pseudo-3D-space visualiza-
tion only shows relative layouts among meshes instead of
the absolute sizes and locations.

To validate PMMD meshes in physical sizes and loca-
tions, we directly render PMMD meshes (pink) against

the GT meshes (gray), ROMP(blue), and BEV(yellow)
in the physical global 3D coordinate. In the video file
“single image 360views.mp4” attached to this supplemen-
tary package, we show single-image mesh detection results
in 360-degree synthesized camera views. Under many chal-
lenging scenarios, most PMMD meshes closely match the
GT meshes in poses, sizes, and locations.
Out-of-distribution Images. In Fig.1-Fig.2, we show
PMMD mesh detection results on images from many un-
seen scenarios. Since there is no GT mesh to compare with,
we only show PMMD results in the camera 3D coordinates.
PMMD is robust to the person in the side profile, with trun-
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Figure 2. The proposed PMMD results on out-of-distribution (unseen scenarios) images. Since no GT mesh is available, only PMMD
meshes are displayed in Front View | Top View | Side View of the camera 3D coordinate. The Predicted Dethmaps are displayed in the last
column. PMMD is robust to the person in the side profile and under heavy occlusion.

cated legs, in the wild fields, and under heavy occlusion.
Failure Cases. In Fig. 3, we observed two main failure
cases of PMMD under its current configuration:

• Failure on small person detection. This failure can be
improved by bigger input sizes (bigger than the current
512x832) and stronger backbones such as the Swin-
Transformer 1.

• Failure on depth estimation of the children meshes.
This failure can be improved using the SMPL-Age
model and GT age annotations used in BEV [24].

2. Training Data and Recipes
Data/Annotations. All recent works on SMPL mesh esti-
mation used very different extra training data and annota-
tions. Many of them were not released for license issues.
For instance, VIBE, SPIN, CRMH, and BMP used the li-
censed codes from [18] to generate high-quality GT SMPL
meshes on Human3.6M. This makes it impossible to con-
duct a strictly fair comparison among all algorithms. It is
also very difficult for future researchers to move forward.

We consider the advances in algorithms and data/anno-
tations to be equally critical driving forces to the research.

1Swin Transformer Mask-RCNN. https : / / github . com /
microsoft/Swin-Transformer

To the best knowledge within the scope of this work, we
provide all extra training data below and method-specific
configurations in Table 1.

Among the compared methods in the main paper Table.1,
the list of all training datasets are: (a) 3DPW train set [26],
(b) Human3.6M train set [4], (c) MPI-Inf-3DHP [21], (d)
UP [14], (e) MS-COCO [17], (f) MPII [2], (g) LSP [6], (h)
LSP extend [7], AICH [27] (extra: (i) MuCo-3DHP [20],
(j) OH [25], (k) PoseTrack [1], (l) Crowdpose [15] (m)
Human3.6M test set [4], (n) PennAction [31], (o) In-
staVariety [9], (p) Kinetics-400 [3], (q) AMASS [19]), (r)
AGORA [23], (s) CLIFF-coco and CLIFF-mpii (pseudo-
GT) [16], (t) Relative depth order annotation and age group
classfication (used in BEV) [24], (u) SUN360 [28], (v)
MTP [22].

Besides the extra training databases, some methods
leverage extra priors which are usually associated with ex-
tra data collection and annotations. The list of extra priors
in training are: (i) temporal smoothness [11], (ii) person-to-
person depth order [24], (iii) ground plane [8,12], (iv) shape
deformation by ages [24].

PMMD does not rely on additional annotations (t-v) or
priors (i-iv), yet produced far better global metrics than ex-
isting methods (see metrics reported in Table 1 in the main
submission).
Training Recipes. Due to the complexity of using so

https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
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Figure 3. Failure cases. Detected meshes are displayed in Front View | Top View | Side View. The Predicted Dethmaps are displayed in
the last column. In the 1st-2nd row, PMMD fails to detect some small bodies (marked by red rectangles). In the 3rd-4th row, PMMD fails
to locate the child meshes (pointed by red arrows) because only the adult SMPL model was used in training PMMD.

Table 1. Comparison on method-specific training data/annotations
and priors.

Method Training datasets Extra Priors

Existing Model(GT bbox+Est. Camera-pose)
SPEC [12] (a, b, c, e, u, v) (iii)
Existing Model(2D Detector+Weak-persp. depth)
OpenPose+SPIN [13] (b∗ , c, e, f, g, h) -
YoloV3+VIBE [11](video) (a, b∗ , c, k, n, o, p, q) (i)
BMP [30] (b∗ , c, e, f, g, h, i, k) -
CRMH [5] (b∗ , c, e, f, g, h, k) -
Faster-RCNN+OCHMR [10] (b∗ , c, e, f, g, h, k) -
ROMP [29] (a, b, c, d, e, f, g, h, i, j, k, l, m) -
Existing Model(2D Detector+Est. depth)
BEV [24](SMPL-Age) (a-v) (ii, iv)

Ours
PMMD (a, b, c, e, f, g, h, r, s) -

1Datasets with star (“x∗”) indicate their GT were generated by [18].
2Datasets with underline (“x”) indicate that their SMPL GT is not publicly released
by the time of WACV2024 deadline.

many databases above, all the existing advances depend
on method-specific and evaluation-data-specific training
recipes. To our knowledge of existing methods [5, 24, 29],
the most common elements among previous recipes are the
sampling probabilities of databases used on each loss and
in each training step. Here we only present the recipe that
makes PMMD work well.

(a) Data sampling by losses: For LDetection, we used
all datasets that are annotated with the object class labels
and 2D bounding boxes of person. For Lj3d and Lj2d, we
used the 2D joint annotations provided in MS-COCO [17],
LSP [6], LSP extend [7], MPII [2], and 3D joint annota-

tions in Human3.6M [4], 3DPW [26], MPI-Inf-3DHP [21]
respectively. Note that for the two datasets that have ground
truth SMPL coefficients (Human3.6M, 3DPW), we used the
3D joints sampled from the ground truth SMPL meshes for
training instead. For Lθ and Lpose, the losses were only
computed on the datasets that have ground truth SMPL co-
efficients [4, 26]. For the global losses LGlobal, LGRes and
LGV ertex, we only calculated these losses on the datasets
that provide frame-wise camera motion metrics (extrinsics)
[4, 26]. For the mask loss LMask, we used the ground truth
person instance mask annotations in MS-COCO [17].

(b) Data Sampling by Training Steps:

• In Step-1: Sampling probability of datasets are listed:
0.6(3DPW), 0.6(Human3.6M), 0.3(COCO),
0.2(AGORA), 0.3(LSPET), 0.3(LSP), 0.3(MPII),
0.1(MPI INF 3DHP), 0.4(CLIFF-coco peseudo-GT),
and 0.4(CLIFF-mpii peseudo-GT).

• In Step-2: Sampling probability of datasets are listed:
0.8(3DPW), 0.5(Human3.6M), 0.15(COCO),
0.05(MPII), 0.1(AGORA), 0.05(MPII),
0.05(MPI INF 3DHP), 0.3(CLIFF-coco peseudo-
GT), and 0.3(CLIFF-mpii peseudo-GT).

3. Aligning Global Coordinates for Training
In our work, to utilize different datasets collected under

different camera intrinsics, we align input images, GT mesh



translation and GT meshes accordingly for consistent train-
ing and fair evaluation.

We first define a common intrinsic matrix K ∈ ℜ3×3 for
projecting meshes to the image plane:f 0 w/2

0 f h/2
0 0 1

 , (1)

where w, h are the size of the image plane and f = 1000 is
the focal length manually set following [5, 29, 30].

For GT translation alignment, given the image resizing
scale factor, the image shifting pixel offsets, and the real
and manually-set camera focal lengths, the aligning process
is implemented as in Algorithm 1. In practice, we achieve
such alignment on-the-fly in the dataloader for individual
input images. The alignment process is also triggered dur-
ing our proposed global padding augmentation. For any re-
sizing/shifting augmentation on an input image, we adjust
the corresponding GT translations of all meshes in this im-
age accordingly.

For GT SMPL alignment, we transform the problem of
calculating the absolute GT global translation into the prob-
lem of calculating the local-to-global translations. Giving
the GT camera extrinsic E ∈ ℜ4×4 and the GT SMPL co-
efficients θ ∈ ℜ10×1, β ∈ ℜ24×3 in the world space, we
calculate the ground truth translation vector tgt ∈ ℜ1×3

from the local space to the global (camera) space in a pre-
processing step. Specifically, a translation vector tgt is an
average distance of the same mesh between the local space
and global space after aligning the mesh root rotation to the
global space. The procedure is implemented in Algorithm 2
in PyTorch style. We processed all the annotated meshes to
obtain GT local-global translations tgt, which are later used
in baseline and PMMD training.

4. Cuda-based Center-Padding RoI-Align
We design a Cuda-based Center-Padding RoI-Align

module. The process is implemented as in Algorithm 3.
This function is a CUDA kernel that performs forward pass
computation of Region of Interest (RoI) pooling with cen-
ter padding on input feature maps. It takes the following
arguments:

• nthreads (integer): The number of threads to be
launched for the kernel.

• bottom data (pointer to scalar t): A pointer to the
input feature map tensor in row-major order.

• bottom RoIs (pointer to scalar t): A pointer
to the tensor containing RoIs in the format
(batch index, x1, y1, x2, y2) where (x1, y1) and
(x2, y2) are the top-left and bottom-right corners of
the RoI, respectively.

Algorithm 1 Aligning GT translations

# f: pre-defined common focal length
# f_real: dataset-aware real focal length
# scale: scale factor of image resizing
# t: aligned GT image-camera translation,
# of the shape [3,]
# pos_x: pixel offset on x axis
# pos_y: pixel offset on y axis
# img_shape: the shape of network input,
# of the shape [w,h,3]
def align_translation(f, f_real, scale,

t, pos_x, pos_y, img_shape):
# scale depth by image resizing scale
t[-1] /= scale

# align x axis
offset = img_shape[0] // 2 - pos_x
t[0] -= (t[-1] * offset) / f_real

# align y axis
offset = img_shape[1] // 2 - pos_y
t[1] -= (t[-1] * offset) / f_real

# align z axis
t[-1] /= f_real / f

return t

Algorithm 2 Calculating GT local-global translations

# E: ground truth extrinsics
# pose: ground truth SMPL pose coefficients
# shape: ground truth SMPL shape coefficients

def obtain_GT_translation(E, pose, shape):
# transform root rotation to camera space
root_cam = pose[0] @ E[:3,:3]
pose_cam = pose
pose_cam[0] = root_cam

# construct GT mesh with camera space rotations
M_rot = SMPL(pose_cam, shape)

# construct GT mesh in world space
M = SMPL(pose, shape)

# transform GT mesh from world to camera
M_cam = torch.ones(6890, 4)
M_cam[:,:3] = M
M_cam = M_cam @ E
M_cam = M_cam[:,:3] / M_cam[:,[-1]]

# obtain GT image-camera translations
t = torch.mean(M_cam - M_rot)

# t in the shape [3,]
return t

• spatial scale (scalar t): A scalar representing the
spatial scale factor.

• sample num (integer): The number of sampling
points in each bin. If it is set to 0, then it is set to
the ceiling value of RoI width or height divided by the
corresponding pooled width or height.

• channels (integer): The number of channels in the
input feature map.



• height (integer): The height of the input feature map.

• width (integer): The width of the input feature map.

• pooled height (integer): The height of the output
pooled feature map.

• pooled width (integer): The width of the output
pooled feature map.

• top data (pointer to scalar t): A pointer to the output
tensor in row-major order.

The function performs RoI pooling by dividing each RoI
into pooled height × pooled width non-overlapping bins
and taking the maximum value of each bin. Center padding
is applied to the RoI before the pooling operation, such that
the RoI is made square and then padded on both sides if
necessary to make its height and width equal to the max-
imum of the two dimensions. The function then performs
bilinear interpolation to sample values from the input fea-
ture map at evenly spaced points within each bin. Finally,
the output values are averaged over the number of sampling
points within each bin.
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Algorithm 3 Cuda-based Center-Padding RoI-Align

template <typename scalar_t>
__global__ void RoIPadCenterForward(const int nthreads, const scalar_t *bottom_data,

const scalar_t *bottom_RoIs,
const scalar_t spatial_scale,
const int sample_num, const int channels,
const int height, const int width,
const int pooled_height, const int pooled_width,
scalar_t *top_data) {

CUDA_1D_KERNEL_LOOP(index, nthreads) {
// (n, c, ph, pw) is an element in the aligned output
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int c = (index / pooled_width / pooled_height) % channels;
int n = index / pooled_width / pooled_height / channels;

const scalar_t *offset_bottom_RoIs = bottom_RoIs + n * 5;
int RoI_batch_ind = offset_bottom_RoIs[0];
scalar_t RoI_start_w = offset_bottom_RoIs[1] * spatial_scale;
scalar_t RoI_start_h = offset_bottom_RoIs[2] * spatial_scale;
scalar_t RoI_end_w = (offset_bottom_RoIs[3] + 1) * spatial_scale;
scalar_t RoI_end_h = (offset_bottom_RoIs[4] + 1) * spatial_scale;

// Force malformed RoIs to be 1x1
scalar_t RoI_width = fmaxf((scalar_t)RoI_end_w - RoI_start_w, 0.);
scalar_t RoI_height = fmaxf((scalar_t)RoI_end_h - RoI_start_h, 0.);

// make square
scalar_t square_length = fmaxf(RoI_width, RoI_height);
scalar_t RoI_width_offset = RoI_width;
scalar_t RoI_height_offset = RoI_height;
RoI_width = square_length;
RoI_height = square_length;

// Padding
scalar_t pad_w = 0;
scalar_t pad_h = 0;
if (RoI_height > RoI_height_offset) {

pad_h = (RoI_height - RoI_height_offset) / 2;
}
if (RoI_width > RoI_width_offset) {

pad_w = (RoI_width - RoI_width_offset) / 2;
}

scalar_t bin_size_h = RoI_height / pooled_height;
scalar_t bin_size_w = RoI_width / pooled_width;
if (ph * bin_size_h > RoI_height_offset + pad_h || pw * bin_size_w > RoI_width_offset + pad_w
|| ph * bin_size_h < pad_h || pw * bin_size_w < pad_w) {
top_data[index] = 0;

} else {
const scalar_t *offset_bottom_data = bottom_data + (RoI_batch_ind * channels + c) * height * width;
int sample_num_h = (sample_num > 0) ? sample_num : ceil(RoI_height / pooled_height);
int sample_num_w = (sample_num > 0) ? sample_num : ceil(RoI_width / pooled_width);

scalar_t output_val = 0;
for (int iy = 0; iy < sample_num_h; iy++) {

const scalar_t y = RoI_start_h - pad_h + ph * bin_size_h + (scalar_t)(iy + scalar_t(.5f))
* bin_size_h / (scalar_t)(sample_num_h);

for (int ix = 0; ix < sample_num_w; ix++) {
const scalar_t x = RoI_start_w - pad_w + pw * bin_size_w + (scalar_t)(ix + scalar_t(.5f))

* bin_size_w / (scalar_t)(sample_num_w);
scalar_t val;
if (x >= width || y >= height){

val = 0;
}
else{

val = bilinear_interpolate<scalar_t>(offset_bottom_data, height, width, y, x); // feature map coords
}
output_val += val;

}
}
output_val /= (sample_num_h * sample_num_w);
top_data[index] = output_val;

}
}

}
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