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Section I provides more ablation studies. Section II pro-
vides more qualitative results. Section III provides addi-
tional discussions and experiments. Experiments in the sup-
plementary material are conducted using our model with the
SegNeXt-B backbone.

I. More Ablation Studies
I.I. Ablations on Hyperparameters

Our supervised multi-modal contrastive learning ap-
proach involves four hyperparameters, including loss
weights λcm, λvis, λaux (in Eq. (7)), and temperature τ
(see Eqs. (4) and (6)).

λcm, λvis, λaux 0 0.01 0.05 0.1 0.2
mIoU (%)

Low 66.02 68.01 67.54 68.36 68.76
Night 58.44 59.48 60.00 58.78 58.60

Normal 54.70 55.70 55.77 55.02 55.32

Table I. Ablations on loss weights λcm, λvis, and λaux for low-
light indoor, nighttime outdoor, and normal-light scene segmen-
tation. We set λcm = λvis = λaux to balance the effect of our
three contrastive losses. Single-scale results are reported. The best
results are shown in bold.

τ 0.05 0.1 0.2
mIoU (%)

Low 68.19 68.76 68.37
Night 59.67 60.00 58.50

Normal 55.43 55.77 55.46

Table II. Ablations on temperature τ for low-light indoor, night-
time outdoor, and normal-light scene segmentation tasks. Single-
scale results are reported. The best results are shown in bold.

Table I reports the ablation studies on λcm, λvis, and
λaux. τ is set as 0.1 in the experiments. As shown, a proper

setting of loss weights enhances the effect of our approach.
Therefore, according to the results, we set λcm, λvis, and
λaux as 0.2 and 0.05 in our experiments for low-light indoor
scene segmentation and experiments for nighttime outdoor
and normal-light scene segmentation, respectively.

Based on the selected loss weights, we study the effect of
τ in Tab. II. According to the ablation results, which show
that a middle temperature setting allows better performance,
we set τ as 0.1 in our three tasks.

I.II. Ablations on Intermediate Modules

Our intermediate modules follow common protocols to
learn spatial and channel weights (coefficient matrix and
vector) from multi-modal features to model their depen-
dency and facilitate their interaction. However, different
from previous methods [1, 7], which learn separate weights
for different modalities, we learn a shared weight (see
Eqs. (1) and (2)) to better model the correspondence of two
modalities both carrying limited cues. Here we first conduct
basic ablations to study the effect of our intermediate mod-
ules, then compare the different weight learning manners to
justify our superiority.

Modela Modelb Modelc Modeld
Spatial Learning ✗ ✓ ✗ ✓

Channel Learning ✗ ✗ ✓ ✓
mIoU (%) 64.49 65.15 65.45 66.02

Table III. Effect of our intermediate modules. Single-scale results
on low-light indoor scenes are reported. The best result is shown
in bold. Modeld is identical to the Model1 in Tab. 5.

Basic Ablations. We study our intermediate modules
in Tab. III. Our supervised multi-modal contrastive learn-
ing approach is not used here. First, we remove our four
modules to build Modela, in which there is no interaction
with features from the two encoders before feeding to the
decoder. The segmentation accuracy is only 64.49%. Then
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we add four modules with only spatial or channel coeffi-
cient learning to build Modelb or Modelc, in which fea-
tures from the two encoders have spatial or channel inter-
action (see Eqs. (1) and (2)). The accuracy is 65.15% or
65.45%, respectively. After combining two kinds of learn-
ing in Modeld to allow both spatial and channel interaction
between multi-modal features as in Eqs. (1) and (2), the ac-
curacy rises to 66.02%.

Manner Low Night Normal
mIoU (%)

Separate 68.27 59.67 55.30
Shared 68.76 60.00 55.77

Table IV. Comparison of weight learning manners. Our full model
is employed. Single-scale results are reported. The best results are
shown in bold.

Comparison of Learning Manners. Different from the
interaction modules of previous methods [1,7], which learn
separate weights for for different modalities, our intermedi-
ate modules learn a shared weight to better model the cor-
respondence of the limited cues in the visible and auxiliary
modalities. This follows the idea of our supervised multi-
modal contrastive learning approach, which aims to fully
capture the correspondence between cross-modal contex-
tual and geometry cues. Based on our full model trained
by adding the proposed contrastive approach, we compare
our weight learning manner (denoted as Shared) and the
learning manner of previous methods (denoted as Separate)
in Tab. IV. Experiments on three tasks consistently demon-
strate our effectiveness and superiority.

I.III. Efficiency Evaluation

Table V reports the model efficiency. By comparing the
first three models, we can observe that the spatial/channel
coefficient learning in the four intermediate modules uses
3.09/13.87M parameters and 2.87/0.02G FLOPs in total.
By comparing the last two models, we can see that our su-
pervised multi-modal contrastive learning approach can in-
crease model performance while maintains the efficiency.

Model Params. (M) FLOPs (G) Low
mIoU (%)

Only Spa. 57.68 72.21 65.15
Only Cha. 68.46 69.36 65.45

Spa. + Cha. 71.55 72.23 66.02
S + C + SMMCL 71.55 72.23 68.76

Table V. Evaluation of model efficiency on low-light indoor
scenes. Input visible and auxiliary images are of size 3×480×640.
Single-scale results are reported. The best result is shown in bold.

II. More Qualitative Results
Figure I presents more qualitative comparisons between

our model, the baseline, and three state-of-the-art multi-
modal image segmentation methods (CMX [7], TokenFu-
sion [5], and CEN [6]) on the task of understanding low-
light indoor scenes from RGB-depth data. Figure II visu-
alizes more results from our model, the baseline, Token-
Fusion [5], and two RGB-thermal segmentation methods
(CMX [7] and ABMDRNet [8]) for the nighttime outdoor
scene segmentation task. As can be seen in the compar-
isons between our model and the baseline, our supervised
multi-modal contrastive learning approach can effectively
enhance dark scene understanding based on multi-modal
images with limited semantics. Besides, compared with
those state-of-the-art methods, which develop advanced fu-
sion techniques but neglect the importance of class corre-
lations in multi-modal dark scene semantic segmentation,
our model can predict more accurate class information for
objects in darkness, such as the pillow in the second scene
of Fig. I and the bicycles in the second scene of Fig. II, and
achieves much higher overall accuracy in the tasks.

Figure III further provides more qualitative compar-
isons between our model, the baseline, CMX [7], TokenFu-
sion (SegFomer-B3) [5], and CEN [6] for the RGB-depth
based normal-light scene segmentation task. As can be ob-
served, our supervised multi-modal contrastive learning ap-
proach shows superior generalization capability in normal-
light scenarios, and enables our model to achieve segmen-
tation masks closer to the ground truth and create a state of
the art in multi-modal scene understanding.

III. Additional Discussions and Experiments
III.I. Robustness to “Invalid” Auxiliary Modality

An interesting phenomenon in multi-modal scene under-
standing is that the auxiliary modality might not provide
effective geometry cues for objects. This would cause a
learning bias problem of segmentation models.

We show example scenarios in the task of dark scene un-
derstanding in Fig. IV. In the first scene, the depth values of
different objects are very similar. In the second scene, the
thermal response of the car is similar to that of the back-
ground objects. Segmentation models tend to learn a bias
towards the auxiliary modality and confuse those objects
in the first scene and the car and background in the sec-
ond scene (we show results from two state-of-the-art meth-
ods and the baseline). This problem exists in even normal-
light scene understanding. As shown in Fig. V, those mod-
els tend to confuse the bicycles and background in the first
scene and the fireplace and wall in the second scene. In
contrast, our model can better avoid this learning bias prob-
lem by enjoying the contextual cues in the visible modality,
showing stronger robustness to “invalid” auxiliary modal-



ity and higher discriminative learning capability to different
image modalities. This is thanks to our supervised multi-
modal contrastive learning approach, which fully consid-
ers the cross-modal context-geometry correspondence and
effectively boosts the learning on the visible and auxiliary
modalities in our tasks.

III.II. Failure Case

The adoption of our supervised multi-modal contrastive
learning approach enables our model to achieve higher ac-
curacy when understanding dark scenes based on multi-
modal images with limited semantic information and show
stronger robustness to auxiliary modalities that do not pro-
vide effective geometry cues. However, in our tasks, we see
failure case when both the visible and auxiliary modalities
do not provide effective spatial cues for objects. Examples
are shown in Fig. VI. Our model fails at the bicycles be-
tween the two persons in the first scene and a black car in
the second scene, because the RGB modality do not pro-
vide effective contextual cues and the thermal modality do
not provide effective geometry cues. This happens to other
methods as well. Another example is the bicycle in the third
scene of Fig. II. Advanced image synthesis techniques [2]
might be helpful for such challenging case.

III.III. Application on Other Segmentation Models

We apply our supervised multi-modal contrastive learn-
ing approach on SA-Gate [1] and CMX [7] and report
the quantitative results in Tab. VI. The loss weights λcm,
λvis, and λaux are set as 0.05 in the three tasks. As
shown, with the addition of our approach, the accu-
racy achieved by SA-Gate and the accuracy achieved by
CMX in low-light indoor/nighttime outdoor/normal-light
scene segmentation increase to 63.18%/57.79%/52.30%
and 67.58%/59.63%/55.28%, respectively.

Method Backbone Low Night Normal
mIoU (%)

SA-Gate ResNet-101 61.79 56.35 51.45
SA-G + SMMCL ResNet-101 63.18 57.79 52.30

CMX SegFormer-B2 66.52 57.80 54.10
CMX + SMMCL SegFormer-B2 67.58 59.63 55.28

Table VI. Application of our supervised multi-contrastive learning
approach on other segmentation models. Single-scale results are
reported. The best results are shown in bold.

Qualitative results from CMX and CMX + SMMCL are
further provided in Fig. VII. As can be seen, by applying our
approach to include a consideration for class correlations
during loss optimization, CMX can achieve more accurate
class predictions in both dark and normal-light scenes based
on different image modalities. This demonstrates again the

effectiveness, generalizability, and applicability of our ap-
proach in dark scene understanding and multi-modal scene
understanding tasks.
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(a) RGB (b) Depth (c) Ground Truth (d) CEN [6]

(e) TokenFusion [5] (f) CMX [7] (g) Base (w/o SMMCL) (h) Ours (w SMMCL)

(i) RGB (j) Depth (k) Ground Truth (l) CEN [6]

(m) TokenFusion [5] (n) CMX [7] (o) Base (w/o SMMCL) (p) Ours (w SMMCL)

(q) RGB (r) Depth (s) Ground Truth (t) CEN [6]

(u) TokenFusion [5] (v) CMX [7] (w) Base (w/o SMMCL) (x) Ours (w SMMCL)

Figure I. Low-light indoor scene segmentation from RGB-depth data.



(a) RGB (b) Thermal (c) Ground Truth (d) ABMDRNet [8]

(e) TokenFusion [5] (f) CMX [7] (g) Base (w/o SMMCL) (h) Ours (w SMMCL)

(i) RGB (j) Thermal (k) Ground Truth (l) ABMDRNet [8]

(m) TokenFusion [5] (n) CMX [7] (o) Base (w/o SMMCL) (p) Ours (w SMMCL)

(q) RGB (r) Thermal (s) Ground Truth (t) ABMDRNet [8]

(u) TokenFusion [5] (v) CMX [7] (w) Base (w/o SMMCL) (x) Ours (w SMMCL)

Figure II. Nighttime outdoor scene segmentation from RGB-thermal data.



(a) RGB (b) Depth (c) Ground Truth (d) CEN [6]

(e) TokenFusion [5] (f) CMX [7] (g) Base (w/o SMMCL) (h) Ours (w SMMCL)

(i) RGB (j) Depth (k) Ground Truth (l) CEN [6]

(m) TokenFusion [5] (n) CMX [7] (o) Base (w/o SMMCL) (p) Ours (w SMMCL)

(q) RGB (r) Depth (s) Ground Truth (t) CEN [6]

(u) TokenFusion [5] (v) CMX [7] (w) Base (w/o SMMCL) (x) Ours (w SMMCL)

Figure III. Normal-light scene segmentation from RGB-depth data. Depth images are encoded to HHA maps [3] in this task.



(a) RGB (b) Depth (c) Ground Truth (d) CMX [7] (e) Base (w/o SMMCL) (f) Ours (w SMMCL)

(g) RGB (h) Thermal (i) Ground Truth (j) TokenFusion [5] (k) Base (w/o SMMCL) (l) Ours (w SMMCL)

Figure IV. Robustness to “invalid” auxiliary modality in dark scene understanding.

(a) RGB (b) Thermal (c) Ground Truth (d) CMX [7] (e) Base (w/o SMMCL) (f) Ours (w SMMCL)

(g) RGB (h) Depth (i) Ground Truth (j) TokenFusion [5] (k) Base (w/o SMMCL) (l) Ours (w SMMCL)

Figure V. Robustness to “invalid” auxiliary modality in normal-light scene understanding. The first row shows a scene from the daytime
split in the test set of the MFNet dataset [4].



(a) RGB (b) Depth (c) Ground Truth (d) TokenFusion [5] (e) CMX [7] (f) Ours

Figure VI. Failure case in nighttime scene segmentation from RGB-thermal data. Note that, the ground truth of the first scene is not exactly
correct: there should be bicycles between the two persons; no bicycles on their bodies.

(a) RGB (b) Depth (c) Ground Truth (d) CMX (e) CMX + SMMCL

(f) RGB (g) Thermal (h) Ground Truth (i) CMX (j) CMX + SMMCL

(k) RGB (l) HHA (m) Ground Truth (n) CMX (o) CMX + SMMCL

Figure VII. Application of our supervised multi-modal contrastive learning approach on CMX [7].


