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In this supplementary, we provide additional details re-
garding the implementation and extend the ablation studies
from the manuscript.

1. Additional Implementation Details

1.1. Multiscale Video Transformer

To extract the visual representations from videos, we
leverage the multiscale video transformer (MVITv2) archi-
tecture proposed in [8]. To have a fair comparison with ex-
isting approaches and avoid a direct overlap with unseen
classes, we follow the training protocol proposed in [2] and
remove the classes that have a semantic relatedness (SR)
score of less than 0.05 with respect to UCF and ActivityNet
classes. This results in 105 overlapping classes, and 595
non-overlapping classes. We train the MVITv2 model on
these 595 classes (K595) to compare with the approaches
in Table 4 & 5. On the other hand, [11] proposes training
on Sports-1M dataset, which does not have the majority of
videos available. To circumvent this issue, we directly use
the visual features extracted in their implementation1.

2. Additional Ablation Studies

2.1. Sensitivity analysis of sigma

We show the sensitivity to sigma values in Fig. 2. We ob-
serve that the performance is not very sensitive to the value
of sigma.

2.2. Comparison to video based approaches

While there has been limited progress in multimodal
zero-shot learning, there are several existing works that only
leverage the video modality for zero-shot action recogni-
tion. In Table 1, we compare the performance using the
video branch of the proposed MZST model to recent meth-
ods. For a fair comparison, we follow the training and eval-
uation protocol along with the splits discussed in [2]. All
the methods are evaluated by randomly splitting the dataset
in half and averaging the results over 10 trials. We can

1https://github.com/ExplainableML/TCAF-GZSL

Method UCF ActivityNet

DataAug [15] 18.3 -
InfDem [13] 17.8 -
Bidirectional [14] 21.4 -
TARN [1] 19 -
Action2Vec [5] 22.1 -
OD [9] 26.9 -
CLASTER [4] 46.4 -
DASZL [7] 48.9 -
GGM [9] 20.3 -
PS-ZSAR (662 classes) [6] 49.2 -
E2E (605 classes) [2] 44.1 26.6
ViSET-96(505 classes) [3] 45.6 35.8

MZST-V (Ours) 49.78 38.1

Table 1. Comparison with the state-of-the-art video-only methods
on standard benchmark datasets.

clearly observe that the proposed approach outperforms ex-
isting approaches by 4.18% on the UCF dataset and 2.3%
on the ActivityNet dataset. This demonstrates the effective-
ness of the multiscale representation learning leveraged by
the MZST architecture.

2.3. Train/Test Splits

Due to the lack of a zero-shot evaluation set, in early
video zero-shot literature the datasets were randomly split
to create train-test sets, leading multiple train/test splits. On
the other hand, recent approaches [10, 11] have proposed
specific splits such that the test classes do not overlap with
the pretraining dataset classes, therefore creating multiple
splits is no longer possible. So we use the train-test splits
proposed in AVCA.

2.4. Few-Shot setting

We follow GGM’s setting [12] and fine-tune the MLP
layer of our model on few-samples from each unseen class,
and then evaluate the few-shot performance. The perfor-
mance is averaged over 5 trials.
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Figure 1. Correct predictions per class on the test split of VGG-Sound dataset.

Figure 2. Sensitivity to sigma values

3. Limitations

In Fig. 1, we demonstrate the performance of the pro-
posed MZST approach on the test split of the VGG-Sound
dataset proposed in [10]. While MZST is able to predict
several classes correctly, there are a few classes where the
total number of correct predictions are zero. For exam-
ple, baby laughing and people giggling have similar sounds,
but to differentiate them requires a fine grained object level
knowledge between a baby and a person. However, such
object level information is generally missing in video mod-
els which are used to infer the appearance of an object.

Figure 3. Few-Shot Performance
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