Evidential Uncertainty Quantification: A Variance-Based Perspective Supplementary Material

Ruxiao Duan ${ }^{1}$, Brian Caffo ${ }^{1}$, Harrison X. Bai ${ }^{2}$, Haris I. Sair ${ }^{2}$, Craig Jones ${ }^{1}$
${ }^{1}$ Johns Hopkins University
${ }^{2}$ Johns Hopkins University School of Medicine
\{rduan6, bcaffo1, hbai7, craigj\}@jhu.edu, hsair1@jhmi.edu

A. Derivations

A.1. Problem Setup

In a C-class classification problem, it is assumed that the label vector $\boldsymbol{y}=\left[y_{1}, y_{2}, \ldots, y_{C}\right]^{\top}$ is a one-hot random vector that follows a categorical distribution with parameters $\boldsymbol{\mu}$. The class probabilities $\boldsymbol{\mu}$ follow a Dirichlet distribution with concentration parameters $\boldsymbol{\alpha}$.

$$
\begin{equation*}
\boldsymbol{y} \sim \operatorname{Cat}(\boldsymbol{\mu}) \quad \boldsymbol{\mu} \sim \operatorname{Dir}(\boldsymbol{\alpha}) \tag{1}
\end{equation*}
$$

in which $\operatorname{Cat}(\cdot)$ and $\operatorname{Dir}(\cdot)$ denote categorical distribution and Dirichlet distribution respectively.

The class probability vector is $\boldsymbol{\mu}=\left[\mu_{1}, \mu_{2}, \ldots, \mu_{C}\right]^{\top}$, in which $\mu_{c} \in[0,1]$ and $\sum_{c=1}^{C} \mu_{c}=1$. The Dirichlet parameters are specified by $\boldsymbol{\alpha}=\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{C}\right]^{\top}$ in which $\alpha_{c}>0$ for $c \in\{1,2, \ldots, C\}$. The Dirichlet strength is denoted by $\alpha_{0}=\sum_{c=1}^{C} \alpha_{c}$.

The expected class probabilities are $\overline{\boldsymbol{\mu}}=\mathbb{E}[\boldsymbol{\mu}]=\frac{\boldsymbol{\alpha}}{\alpha_{0}}$. For class c, the expected probabilty is $\bar{\mu}_{c}=\mathbb{E}\left[\mu_{c}\right]=\frac{\alpha_{c}}{\alpha_{0}}$.

A.2. Covariance Matrices

The covariance matrix of \boldsymbol{y} is defined as

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]:=\mathbb{E}\left[(\boldsymbol{y}-\mathbb{E}[\boldsymbol{y}])(\boldsymbol{y}-\mathbb{E}[\boldsymbol{y}])^{\top}\right] \tag{2}
\end{equation*}
$$

which can be decomposed into aleatoric and epistemic components based on the law of total covariance.

$$
\begin{equation*}
\underbrace{\operatorname{Cov}[\boldsymbol{y}]}_{\text {total }}=\underbrace{\mathbb{E}[\operatorname{Cov}[\boldsymbol{y} \mid \boldsymbol{\mu}]]}_{\text {aleatoric }}+\underbrace{\operatorname{Cov}[\mathbb{E}[\boldsymbol{y} \mid \boldsymbol{\mu}]]}_{\text {epistemic }} \tag{3}
\end{equation*}
$$

A.2.1 Aleatoric Covariance

The aleatoric covariance matrix can be calculated as

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]^{\text {alea }}=\mathbb{E}[\operatorname{Cov}[\boldsymbol{y} \mid \boldsymbol{\mu}]]=\mathbb{E}\left[\operatorname{Diag}(\boldsymbol{\mu})-\boldsymbol{\mu} \boldsymbol{\mu}^{\top}\right] \tag{4}
\end{equation*}
$$

in which $\operatorname{Diag}(\cdot)$ represents a diagonal matrix with the specified vector in its diagonal.

For $i \in\{1,2, \ldots, C\}$,

$$
\begin{align*}
\operatorname{Cov}[\boldsymbol{y}]_{i, i}^{\text {alea }} & =\mathbb{E}\left[\mu_{i}-\mu_{i}^{2}\right] \tag{5}\\
& =\mathbb{E}\left[\mu_{i}\right]-\mathbb{E}\left[\mu_{i}^{2}\right] \tag{6}\\
& =\mathbb{E}\left[\mu_{i}\right]-\mathbb{E}^{2}\left[\mu_{i}\right]-\operatorname{Var}\left[\mu_{i}\right] \tag{7}\\
& =\bar{\mu}_{i}-\bar{\mu}_{i}^{2}-\frac{\bar{\mu}_{i}-\bar{\mu}_{i}^{2}}{\alpha_{0}+1} \tag{8}\\
& =\frac{\alpha_{0}}{\alpha_{0}+1}\left(\bar{\mu}_{i}-\bar{\mu}_{i}^{2}\right) \tag{9}
\end{align*}
$$

For $i, j \in\{1,2, \ldots, C\}$ such that $i \neq j$,

$$
\begin{align*}
\operatorname{Cov}[\boldsymbol{y}]_{i, j}^{\text {alea }} & =\mathbb{E}\left[-\mu_{i} \mu_{j}\right] \tag{10}\\
& =-\mathbb{E}\left[\mu_{i} \mu_{j}\right] \tag{11}\\
& =-\operatorname{Cov}\left[\mu_{i}, \mu_{j}\right]-\mathbb{E}\left[\mu_{i}\right] \mathbb{E}\left[\mu_{j}\right] \tag{12}\\
& =-\frac{-\bar{\mu}_{i} \bar{\mu}_{j}}{\alpha_{0}+1}-\bar{\mu}_{i} \bar{\mu}_{j} \tag{13}\\
& =-\frac{\alpha_{0}}{\alpha_{0}+1} \bar{\mu}_{i} \bar{\mu}_{j} \tag{14}
\end{align*}
$$

Therefore, the aleatoric covariance matrix can be expressed as

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]^{\text {alea }}=\frac{\alpha_{0}}{\alpha_{0}+1}\left(\operatorname{Diag}(\overline{\boldsymbol{\mu}})-\overline{\boldsymbol{\mu}} \overline{\boldsymbol{\mu}}^{\top}\right) \tag{15}
\end{equation*}
$$

A.2.2 Epistemic Covariance

The epistemic covariance matrix can be derived as

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]^{\text {epis }}=\operatorname{Cov}[\mathbb{E}[\boldsymbol{y} \mid \boldsymbol{\mu}]]=\operatorname{Cov}[\boldsymbol{\mu}] \tag{16}
\end{equation*}
$$

For $i \in\{1,2, \ldots, C\}$,

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]_{i, i}^{\text {epis }}=\operatorname{Var}\left[\mu_{i}\right]=\frac{\bar{\mu}_{i}-\bar{\mu}_{i}^{2}}{\alpha_{0}+1} \tag{17}
\end{equation*}
$$

For $i, j \in\{1,2, \ldots, C\}$ such that $i \neq j$,

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]_{i, j}^{e p i s}=\operatorname{Cov}\left[\mu_{i}, \mu_{j}\right]=\frac{-\bar{\mu}_{i} \bar{\mu}_{j}}{\alpha_{0}+1} \tag{18}
\end{equation*}
$$

Therefore, the epistemic covariance matrix can be expressed as

$$
\begin{equation*}
\operatorname{Cov}[\boldsymbol{y}]^{e p i s}=\frac{1}{\alpha_{0}+1}\left(\operatorname{Diag}(\overline{\boldsymbol{\mu}})-\overline{\boldsymbol{\mu}} \overline{\boldsymbol{\mu}}^{\top}\right) \tag{19}
\end{equation*}
$$

A.2.3 Total Covariance

The total covariance matrix can be derived as the sum of aleatoric and epistemic components.

$$
\begin{align*}
\operatorname{Cov}[\boldsymbol{y}] & =\operatorname{Cov}[\boldsymbol{y}]^{\text {alea }}+\operatorname{Cov}[\boldsymbol{y}]^{\text {epis }} \tag{20}\\
& =\operatorname{Diag}(\overline{\boldsymbol{\mu}})-\overline{\boldsymbol{\mu}} \overline{\boldsymbol{\mu}}^{\top} \tag{21}
\end{align*}
$$

A.3. Evidential Class Uncertainties

The evidential uncertainties of class $c \in\{1,2, \ldots, C\}$ not only can be directly retrieved from the diagonal of the corresponding covariance matrix but also can be calculated by decomposing the variance of the class random variable y_{c} based on the law of total variance. The two approaches yield the same result.

$$
\begin{equation*}
\underbrace{\operatorname{Var}\left[y_{c}\right]}_{\text {total }}=\underbrace{\mathbb{E}\left[\operatorname{Var}\left[y_{c} \mid \boldsymbol{\mu}\right]\right]}_{\text {aleatoric }}+\underbrace{\operatorname{Var}\left[\mathbb{E}\left[y_{c} \mid \boldsymbol{\mu}\right]\right]}_{\text {epistemic }} \tag{22}
\end{equation*}
$$

The aleatoric, epistemic, and total class uncertainties can respectively be quantified as follows

$$
\begin{align*}
U_{c}^{\text {alea }} & =\mathbb{E}\left[\operatorname{Var}\left[y_{c} \mid \boldsymbol{\mu}\right]\right] \tag{23}\\
& =\mathbb{E}\left[\mu_{c}\left(1-\mu_{c}\right)\right] \tag{24}\\
& =\mathbb{E}\left[\mu_{c}\right]-\mathbb{E}\left[\mu_{c}^{2}\right] \tag{25}\\
& =\mathbb{E}\left[\mu_{c}\right]-\mathbb{E}^{2}\left[\mu_{c}\right]-\operatorname{Var}\left[\mu_{c}\right] \tag{26}\\
& =\bar{\mu}_{c}-\bar{\mu}_{c}^{2}-\frac{\bar{\mu}_{c}-\bar{\mu}_{c}^{2}}{\alpha_{0}+1} \tag{27}\\
& =\frac{\alpha_{0}}{\alpha_{0}+1}\left(\bar{\mu}_{i}-\bar{\mu}_{c}^{2}\right) \tag{28}\\
U_{c}^{\text {epis }} & =\operatorname{Var}\left[\mathbb{E}\left[y_{c} \mid \boldsymbol{\mu}\right]\right] \tag{29}\\
& =\operatorname{Var}\left[\mu_{c}\right] \tag{30}\\
& =\frac{1}{\alpha_{0}+1}\left(\bar{\mu}_{c}-\bar{\mu}_{c}^{2}\right) \tag{31}\\
U_{c} & =U_{c}^{\text {alea }}+U_{c}^{\text {epis }} \tag{32}\\
& =\bar{\mu}_{i}-\bar{\mu}_{c}^{2} \tag{33}
\end{align*}
$$

The derivation is the same as the covariance derivation on the diagonal entries.

