
A. Appendix: Broader impact
In this work, we treat the membership inference attacks

as a potential tool for privacy protection. By applying these
attacks to a model, we can highlight the instances where
images have been used in training without the appropriate
consent. As more individuals and organizations become
aware of this possibility, we might see a push towards more
stringent data usage policies and ethical guidelines for ma-
chine learning practices. The potential of these attacks to
expose privacy violations could serve as a catalyst for a
broader dialogue on privacy rights and data ownership in the
digital age.

However, these benefits come with a significant caveat.
The same mechanism that can be used to protect user privacy
can also be used maliciously. If a membership inference
attack is successful and achieves high accuracy, it could
potentially lead to personal data leakage. Thus, the dual
implications of membership inference attacks for diffusion
models offer both a warning and a beacon. They highlight
the need for robust privacy protection measures while simul-
taneously alerting us to the potential risks of personal data
leakage.

B. Appendix: Limitations
LAION-5B dataset, the source of data used both to train

the Stable Diffusion model and to create LAION-mi dataset
does not contain the images, just URLs to them. Therefore,
to prepare a training set, one needs to first download the
images using the URLs, and then train the model. Since the
content, that a URL points to is out of our control, it might
be a subject of edition or deletion, which we are unable to
handle. Because of that, we cannot guarantee with 100%
certainty that every member in LAION-mi is a real member
of the Stable Diffusion model’s train set.

In fact, during our experiments, we find out that approx-
imately 10% of links are dead, i.e. we cannot download
images from them. This limitation is inherent to the LAION-
5B dataset, and therefore cannot be alleviated. Additionally,
a URL to an image from LAION-mi has to be alive to use
it for the attack evaluation. We argue that it is unlikely that
a URL from the LAION-mi members subset that was dead
during training of the Stable Diffusion is now alive, however,
we cannot rule out such scenario. Fortunately, since it affects
only the members set, it makes the membership inference
task harder, in effect saving us from the pitfalls described in
Section 4.

C. Appendix: Stable Diffusion-v1.4 training
Datasets Datasets used to train this model are as follows

• LAION-2B EN: a subset of the LAION-5B [28] with
images’ descriptions in English.

• LAION-Aesthetics V2 5+ [27]: a subset of the LAION-
2B EN dataset, in which each image is scored using the
LAION-Aesthetics_Predictor V2 [26], and only images
with the Aesthetic Score above 5 are a part of it.

Stable Diffusion-v1.4 This version of the Stable Dif-
fusion is first trained for 431k steps using samples from
LAION-2B EN, then fine-tuned for 515k steps using LAION-
Aesthetics V2 5+, and then fine-tuned for 225k steps on
LAION-Aesthetics V2 5+ again [23].

D. Appendix: Loss attacks
In this section, we discuss different approaches to perform

the diffusion denoising process in the white-box scenario. In
each of the following setups, at every timestep, we collect
the Model loss, Latent error, and Pixel error described in
Section 6.2. These values are calculated based on the output
of the UNet SD-v1.4 backbone using the methods described
below.

D.1. All attack methods

Here we describe all the methods used in our experiments.
For all methods, the classifier-free guidance is applied with
scale 7.5 unless otherwise stated.

1. Partial denoising Following findings in [4] in this
method, we start our denoising process at the timestep
300 for the steps 26 up to the timestep 50. Latent image
representation is noised once, with scale α300, and then
for each step calculated from the UNet noise prediction.

2. Partial denoising non-iterative is similar to the Par-
tial denoising method, but at each timestep we pass a
newly noised latent representation of the image to the
UNet, instead of the output of the previous timestep’s
inference through UNet. The main intuition behind this
is to see whether the information about membership
gets lost or accumulates during the iterative denoising
process.

3. Partial denoising latent shift follows the Partial de-
noising attack method, but at the middle timestep 170
we shift the latent representation of the image by a
scaled random noise. The intuition behind this method
is that the member samples should return to the correct
trajectory after the shift better than the nonmember sam-
ples enabling us to better identify the member samples.

4. Partial denoising text shift is similar to the Partial
denoising latent shift, but instead of shifting the latent
representation of the image, we shift the text embedding
by a random noise N(0, I)×0.1 before passing it to the
UNet. The intuition here is the same as in the partial
denoising latent shift method, but we want to see if



the text embedding is more important than the latent
representation of the image.

5. Partial denoising bigger text shift is identical to the
Partial denoising text shift, but the noise added to the
text embedding is scaled by 0.5 instead of 0.1. We
want to test if adding more noise to the text embedding
benefits the performance of the attacks.

6. Partial denoising wrong start In this method we fol-
low the Partial denoising, but the starting latent rep-
resentation of the image is noised using αt from the
wrong timestep, t = 100 instead of t = 300. We want
to test whether we can extract more information about
the membership if we apply lower noise to the latent
representations at the beginning of the process than
UNet expects.

7. Full denoising start 100 is similar to the Partial denois-
ing wrong start method, but we perform an almost full
denoising process, starting on timestep and 900 ending
at timestep 0, denoising every 100 and starting from the
latent noised with α100 noise scale.

8. Full denoising start 100 text shift is close to the Full
denoising start 100, but we shift the text embedding by
a random noise N(0, I) ∗ 0.1 before passing it to the
UNet.

9. Full denoising start 50 is similar to the Full denoising
start 100, but the starting latent is noised using α50

instead of α100.

10. Full denoising start 300 is like the Full denoising start
100, but the starting latent is noised using α300 instead
of α100.

11. Short denoising start 300 In this method, we perform
a short denoising process, starting from timestep 200
ending at timestep 0 every 100 steps instead of the full
one. The latent representation of the image is noised
using α300.

12. Reversed noising We perform 10 denoising steps for
timesteps from 900 to 0. The image latent representa-
tion we get from the VAE encoder is noised using noise
scales αt in reverse order, e.g. at timestep 800 we pass
the latent noised with α100 to the UNet. Additionally,
during inference, we use classifier-free guidance on
the guidance scale 100. The text embedding passed to
UNet remains unchanged. The intuition behind the at-
tack is that member samples will behave more robustly
than nonmember samples under such conditions.

13. Full denoising start 300 no cfg is similar to the Full
denoising start 300, but we do not use the classifier-free

guidance. We want to see if the classifier-free guidance
is beneficial for the attacks performance.

14. Full denoising start 100 non-iterative. This method is
identical with the Full denoising start 100, but at each
timestep we pass newly noised latent representation
with scale α100 of the image to the UNet, instead of the
output of the previous timestep.

15. Reversed noising regular cfg resembles the Full de-
noising start 100 non-iterative attack method. The
latent representations we pass to the UNet are noised
using αt from the timesteps in the reversed order, i.e.
from 0 to 900, so the first latent passed to the UNet is
noised using α0, while UNet receives timestep 900 as
input. The classifier-free guidance is applied with scale
7.5.

16. Reversed denoising In this method, we reverse the
order of timesteps at which we perform denoising using
UNet. We start from the timestep 0 and then go up
to the timestep 900, for 10 steps in total. Similarly as
in the baseline loss threshold method, we apply noise
to the latent image representation once, but this time
using noise scale α100. At each timestep we measure
all losses described in Section 6.2 and use them to
evaluate the attack. The intuition here is similar as in
the Reversed noising method, but here we test if the
iterative nature of the diffusion denoising process will
magnify this effect.

D.2. Classifier attack

In addition to the threshold attack type described in 6.2
we also introduce the classifier attack type. Classifier at-
tack builds on top of the threshold attack. It uses a binary
classifier C to predict the membership of an image x based
on the losses collected during inference through the diffu-
sion model. The classifier is trained on a set of images with
known membership and returns a probability of membership
for a given image. We then perform a threshold attack on
the classifier’s output.

Table 3. Hyperparameters used for the classifiers: Logistic
Regression (LR), Decision Tree Classifier (DTC) and Random
Forest Classifier (RFC).

Classifier Hyperparameter Values

LR C [0.01, 0.1, 1, 10, 100]
DTC max_depth [2, 8, 16]

min_samples_split [2, 8, 16]
RFC n_estimators [10, 100, 1000]

max_depth [2, 8, 16]



We train four model classes: Logistic Regression (LR),
Decision Tree Classifier (DTC), Random Forest Classifier
(RFC), and Neural Network binary classifier (NN). The clas-
sifiers are trained in the binary classification task, with the
member samples as positive examples and the nonmember
samples as negative examples. The input for every classifier
consists of the vector of the loss values we collect at every
timestep. For the Logistic Regression (LR), Decision Tree
Classifier (DTC) and Random Forest Classifier (RFC) we
perform Grid Search with k-Cross Validation, k = 5 for
each fit. The hyperparameters used for the classifiers are
described in Table 3. Note that we perform the Grid Search
for every fit separately, therefore we do not report the best
parameters in our table, since they turn out to be different
for different fits.

For the Neural Network classifier (NN) we use the fol-
lowing architecture: 3 fully connected layers, with the input
size of 3 ∗ timesteps (since for different methods we have
a different amount of data), hidden size of 10 and a single
output for the binary classification. We use ReLU activation
function for the hidden layers and Sigmoid for the output
layer. We use Adam optimizer with a learning rate 0.001
and binary cross entropy loss. We train the classifier for 100
epochs with batch size 32 and early stopping. We use the
best model from the early stopping for the evaluation.

Following 6.4 we fit our models 100 times on 100 dif-

ferent training sets sampled from the whole attack set and
evaluate them on the remaining evaluation sets. We report
the mean and standard deviation of the metrics for the 100
fits. The results are presented in Table 4.

D.3. Results

Following our evaluation method described in Section 6.4
we report our results for each method in Table 4 for threshold
attacks, and in Table 5 for classifier attacks.

We conclude that extraction of the membership informa-
tion from the attacked model can be improved by modifying
the diffusion denoising process by altering the timesteps,
latent representations, and text embeddings. We also see that
the information about membership can be better extracted
by using classifier attack, but for most methods, a simple
threshold attack outperforms the classifier attack.

We also observe that different methods achieve visibly
different performance on different timesteps, which points
out that the timing of loss measurement is also really im-
portant when performing the threshold attack, see Figure
7.

E. Appendix: Experiments randomization
Here we highlight the need to perform the randomization

described in Section 6.4. For each of the methods described
in Appendix D we show the differences between the best,

Table 4. Threshold attack results for each method. We see that for each attack method Model loss gives out better performance of
threshold attacks compared to Latent or Pixel error. It is also more robust for the denoising procedure modification than Latent Error,
dropping to at most 2%, while Latent error performance can drop to 1.1%. Pixel error seems also more stable than Latent Error, but we
cannot achieve as high results as for the Model loss or Latent error. The high discrepancy between different attack methods points that we
can indeed influence the amount of membership information extracted during influence, with some methods performing better on Model loss
and some on other losses, Pixel and Latent error.

LOSS MODEL LOSS LATENT ERROR PIXEL ERROR
METHOD

PARTIAL DENOISING 2.3%±0.61 2.4%±0.62 1.7%±0.68
PARTIAL DENOISING NON-ITERATIVE 2.3%±0.68 1.1%±0.46 1.39%±0.59
PARTIAL DENOISING LATENT SHIFT 2.3%±0.62 2.24%±0.9 1.6%±0.62

PARTIAL DENOISING TEXT SHIFT 2.2%±0.57 2.28%±0.57 1.7%±0.64
PARTIAL DENOISING BIGGER TEXT SHIFT 2.3%±0.62 2.22%±0.75 1.74%±0.6

PARTIAL DENOISING WRONG START 2.2%±0.69 2.13%±0.85 1.99%±0.56
FULL DENOISING START 100 2.08%±0.64 1.1%±0.41 1.84%±0.6

FULL DENOISING START 100 TEXT SHIFT 2.01%±0.6 1.1%±0.43 1.8%±0.6
FULL DENOISING START 50 2.0%±0.6 1.15%±0.38 1.95%±0.55

FULL DENOISING START 300 1.99%±0.61 1.34%±0.49 1.72%±0.64
SHORT DENOISING START 300 2.32%±0.67 2.06%±0.72 1.57%±0.67

REVERSED DENOISING 2.25%±0.64 2.17%±0.64 2.03%±0.55
FULL DENOISING 300 NO CFG 2.07%±0.62 1.45%±0.52 1.7%±0.6

FULL DENOISING 100 NON-ITERATIVE 2.2%±0.55 2.18%±0.75 1.91%±0.53
REVERSED NOISING REGULAR CFG 2.5%±0.74 2.03%±0.6 1.92%±0.5

REVERSED NOISING 2.51%±0.73 1.26%±0.52 1.9%±0.51



Table 5. Classifier attack results for each method. Same as in Tab. 4 we observe that for different attack methods the same model classes
achieve visibly different performance. This again confirms that we are able to obtain more information about the membership of samples by
influencing the whole denoising process of the large diffusion model. Unsurprisingly, we are able to outperform the simple threshold attacks,
because the membership information ends up spread out on different timesteps and losses. Using classifier attack we can combine the
information from the whole inference procedure and make better predictions. Surprisingly, it seems to be harder to perform such attacks in
the TPR@FPR=1% regime. For almost all methods and model classes we are not able to outperform the simple threshold attacks, especially
on the Model loss. For almost all methods the Random Forest Classifier model outperforms all other model types, with the exception of
Reversed noising regular cfg method data fitted using Logistic Regression. Decision Tree Classifier fails to be better than a random guess for
almost all methods, and the Neural Network classifier also fails to deliver satisfying results.

CLASSIFIER CLASS LR DTC RFC NN
METHOD

PARTIAL DENOISING 1.83%±0.87 0.67%±1.09 2.27%±0.76 1.50%±0.92
PARTIAL DENOISING NON-ITERATIVE 2.24%±0.86 1.10%±1.12 2.35%±0.88 1.52%±1.03
PARTIAL DENOISING LATENT SHIFT 1.94%±0.92 0.86%±0.94 2.35%±0.86 1.40%±0.91

PARTIAL DENOISING TEXT SHIFT 1.71%±0.87 0.49%±0.84 2.43%±0.93 1.40%±1.00
PARTIAL DENOISING BIGGER TEXT SHIFT 2.14%±1.01 0.80%±1.13 2.30%±0.73 1.49%±0.90

PARTIAL DENOISING WRONG START 1.50%±0.70 0.74%±1.08 2.26%±0.87 1.51%±0.92
FULL DENOISING START 100 1.09%±0.56 0.54%±0.74 1.89%±0.85 1.30%±0.76

FULL DENOISING START 100 TEXT SHIFT 1.10%±0.62 0.62%±0.76 1.88%±0.80 1.24%±0.69
FULL DENOISING START 50 1.16%±0.68 0.70%±0.68 1.89%±0.78 1.31%±0.78

FULL DENOISING START 300 1.21%±0.58 0.42%±0.85 1.87%±0.87 1.39%±0.80
SHORT DENOISING START 300 1.94%±0.91 0.54%±0.83 2.31%±0.91 1.49%±0.85

REVERSED DENOISING 1.96%±0.96 0.80%±1.17 2.37%±0.98 1.26%±0.78
FULL DENOISING 300 NO CFG 1.31%±0.73 0.31%±0.65 1.78%±0.78 1.37%±0.82

FULL DENOISING 100 NON-ITERATIVE 1.60%±0.77 0.68%±1.05 2.19%±0.85 1.60%±0.73
REVERSED NOISING REGULAR CFG 2.41%±1.09 0.47%±1.03 2.17%±0.84 1.40%±0.82

REVERSED NOISING 1.98%±0.97 0.41%±1.02 2.75%±1.03 1.62%±0.86

0

1

2

3

4

5

TP
R

 a
t F

PR
=

1%

Model Loss Latent Error Pixel Error

Mean attack performance Max attack performance Min attack performance

Figure 5. Min, mean, max TPR@FPR=1% for different methods and losses, threshold attack type. Solid line indicates the mean value
of the TPR@FPR=1% metric from 100 experiments, and the shaded area is the 95% confidence interval.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

TP
R

 a
t F

PR
=

1%

Logistic Regression Decision Tree Classifier Random Forest Classifier Neural Network

Mean attack performance Max attack performance Min attack performance

Figure 6. Min, mean, max TPR@FPR=1% for different methods, classifier classes and losses, classifier attack type.



300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

TP
R

@
FP

R
=

1%

Partial denoising

300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Partial denoising non-iterative

300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Partial denoising latent shift

300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Partial denoising text shift

300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

TP
R

@
FP

R
=

1%

Partial denoising bigger text shift

300 250 200 150 100 50

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Partial denoising wrong start

900 800 700 600 500 400 300 200 100 0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Full denoising start 100

900 800 700 600 500 400 300 200 100 0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Full denoising start 100 text shift

900 800 700 600 500 400 300 200 100 0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

TP
R

@
FP

R
=

1%

Full denoising start 50

900 800 700 600 500 400 300 200 100 0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Full denoising start 300

200 100 0

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Short denoising start 300

0 100 200 300 400 500 600 700 800 900

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Reversed denoising

900 800 700 600 500 400 300 200 100 0
Timestep

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

TP
R

@
FP

R
=

1%

Full denoising 300 no cfg

900 800 700 600 500 400 300 200 100 0
Timestep

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Full denoising 100 non-iterative

900 800 700 600 500 400 300 200 100 0
Timestep

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Reversed noising regular cfg

900 800 700 600 500 400 300 200 100 0
Timestep

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
Reversed noising

Model Loss Latent Error Pixel Error

Figure 7. Attack performances on different losses in different timesteps for each attack method for the threshold attack type. The
solid line indicates the mean value of the TPR@FPR=1% metric from 100 experiments, and the shaded area is the 95% confidence interval.
We see how important is to collect all three losses on each timestep, with the biggest difference visible for the Reversed noising method,
with the worst result around 0.5% and the best around 2.5% for Latent error at timestep 0 and Model loss at timestep 500. We derive the
following insights from these plots. Applying the denoising process iteratively instead of passing the newly noised latent to the UNet greatly
benefits the Latent and Pixel error threshold attacks, while slightly reducing the effectiveness of threshold attacks on the Model loss. Shifting
the latent by a random noise mid-inference affects the results negatively, with the biggest drop in performance for the Model loss. Shifting
text embedding by a random noise for different noise scales (0.1 and 0.5) does not make any significant difference in terms of the final
results, generally being slightly harmful to the performance of the threshold attack. The mismatch between the actual and latent noise
timesteps is by far the most impactful modification we implemented. We see improvements on the Pixel error threshold attacks for Partial
denoising wrong start method, where we start from the latent noised with the noise scale of αt = 100 and denoising from the timestep 300
to 50. However, for the Full denoising attack methods we see that different noise scales applied to the starting latent representations do
not change the performance. Applying the classifier-free guidance seems to be insignificant for the final results (see Full denoising 300
vs Full denoising 300 no cfg), but increasing the guidance scale (from the default 7.5 to 100) reduces the effectiveness of the threshold
attacks on Pixel and Latent error. The best results are obtained when we reverse the order of noise scales used to apply noising on the latent
representation of the input image, while the input timesteps we pass to UNet remain in the normal order. We also see in Tab. 5 that these
methods allow the classifier attacks to achieve the best results, suggesting that this approach extracts the most data about the membership
from the model.



mean and worst results for each attack from the separate
runs. We also visualise these differences for the classification
attack type. We can observe a mismatch between mean
and best results for all of the attacks, some of them being
even three times worse than the best ones (Partial denoising
method). When the available size of the nonmembers set
is relatively small, the randomization is crucial to obtain
reliable results, especially when proposing attacks based on
more sophisticated methods that require training a classifier,
which is the case in the classifier attack type. In this case,
we suggest splitting the whole attack set randomly in the
way described in Section 6.4 into training and evaluation
sets, then training the classifier, and repeating the whole
procedure for at least 100 times. The reported results should
be the mean of the results for each attack from each run.
In this way, we can mitigate the influence of the potential
outliers and obtain more reliable results.

Visualisation of the mismatch between the best, mean,
and worst results can be found in Figure 5 for the threshold
attacks and Figure 6 for the classifier attacks.

F. Appendix: Overfitting impact on member-
ship inference attacks

In this section, we present the results of our experiments
on overfitting on the POKEMON dataset from Section 6.4.
We finetune the original StableDiffusion-v1.4 using the de-
fault method from [16] for 30000 train steps with the learn-
ing rate 0.00001 and gradient accumulation of 4. Every 5000
steps we save the partially finetuned model.

The attack method we use to perform for this section
is the Baseline loss threshold method, described in Sec-
tion 6.3. The ROC curves and TPR@FPR=1% results for
different checkpoints can be found in Figure 8a. We can
observe that the model is overfitting to the training set, as
the TPR@FPR=1% results are significantly better for the
checkpoints from the later stages of the training. This is in
line with the findings in [3], which also show that model
loss based membership inference attacks give better results
when the model is overfitted. This issue seems to be not
addressed in some of the previous contributions, e.g. in [6]
authors claim really good performance of their attacks on the
finetuned version of the SD-v1.4 model on the same dataset.

G. Appendix: Fine-tuned Shadow models for
Large Diffusion Models

Training a new Stable Diffusion model from scratch mul-
tiple times is in practice infeasible. Thus, it is impossible to
directly apply the existing shadow model attack in this case.
To overcome this limitation we focus our analysis on model
fine-tuning, rather than training from the start. Motivated
by the state-of-the-art results achieved by shadow model
membership inference, we draw inspiration for our approach

10 3 10 2 10 1 100

False Positive Rate

10 3

10 2

10 1

100

Tr
ue

 P
os

iti
ve

 R
at

e

Pokemon ROC curves for different checkpoints

SD-v.1.4, TPR@FPR=1%: 1.5%
5000, TPR@FPR=1%: 2.5%
10000, TPR@FPR=1%: 5.5%
15000, TPR@FPR=1%: 17.5%
20000, TPR@FPR=1%: 38.5%
25000, TPR@FPR=1%: 59.0%
30000, TPR@FPR=1%: 80.0%
random

(a) ROC curves and TPR@FPR=1% results for different check-
points.

SD-v.
1.4 50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Checkpoint

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
W

as
se

rs
te

in
 D

is
ta

nc
e

0.004

0.013

0.022

0.034

0.046

0.065

0.079

Pokemons members vs non-members noise loss

(b) Wasserstein Distance for different checkpoints.

Figure 8. Figure 8a shows how overfitting correlates with the
attacks performance. Figure 8b shows the Wasserstein Distance
calculated between the losses of members and nonmembers sets
for each checkpoint.

from the offline LIRA attack introduced in [3]. Intuitively,
we aim to answer the question "is there a difference between
finetuning the model on member and nonmember samples?".
To overcome the memory requirements for storing multiple
versions of the Stable Diffusion models we apply fine-tuning
with LoRA [11].

First, we sample n nonmember samples from LAION-mi.



(a) LAION-mi nonmember samples. (b) LAION-mi member samples.

Figure 9. Visualization of the random subset of LAION-mi dataset

For each single sample, we finetune the Stable Diffusion
v1.4 model on a single training step at t = 100 using LoRA.
We measure the ratio of the training loss after and before the
finetuning. We repeat that procedure for n member samples
from LAION-mi. Thus we obtain loss ratio distributions for
shadow models finetuned on member (Dmem) and nonmem-
ber (Dnonmem) samples. For inference, we fine-tune the
model on the new sample using the same procedure, obtain-
ing the corresponding loss ratio l⋆. If Pr[l⋆|Dmem]

Pr[l⋆|Dnonmmem] > τ
we classify the sample as a member.

This attack can only be performed in the white-box sce-
nario. The attacker needs to have access to the model weights
to perform the fine-tuning.

We evaluate our method on 100 subsets of 1000 member
and 1000 nonmember samples randomly selected from 4000
samples from each set. The approach based on shadow mod-
els achieves TPR@FPR=1% equal to 2.21% ± 1.11. The
performance of the attack is thus comparable with the at-
tacks described in Section 6.3. Although shifting the focus of
shadow models from full training to finetuning using LORA
enabled us to apply this kind of approach, the resources re-
quired to execute this attack are still significantly larger than
for the methods described in Sec. 6.3.

H. Appendix: LAION-mi samples
In this section we provide a random sample of the LAION-

mi dataset, 16 images from the nonmembers set and 16
images from the members set, see Figure 9.

I. Appendix: GPU cost
To conduct the experiments for this paper we utilized

4000 hours of Nvidia A100 GPU compute.


