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A. Further Details on SkiTB

This section provides additional information about the
data contained in SkiTB as well as further motivations be-
hind its construction.

To avoid confusion, we state that, in the scope of this pa-
per, a skiing course is considered as a path or track down
a mountain slope that an athlete should follow to com-
plete his/her performance. It should not be confused with
a course taken to learn how to ski.

A.1. Bounding-box Representation

As stated in the main paper, the motivation behind the
employment of bounding-boxes is grounded on the fact that
such a representation is sufficiently informative for the com-
putational processes performed by higher-level skiing per-
formance understanding tasks [1,52,53,78]. The aforemen-
tioned pipelines simply require a rectangle highlighting the
area covered by the skier’s appearance. Compared to the
more complex segmentation masks [47, 48], the four-value
representation of bounding-boxes demands less computa-
tional resources, thus enabling the development of more
efficient methods. Additionally, the choice of including
the appearance of the skiing equipment within the labeled
bounding-box is guided by the common working mecha-
nism of the aforementioned solutions, which necessitate a
bounding-box encompassing both the athlete’s body and
equipment.

A.2. Details on the Visual Attribute Labels

Table 7 presents the description of the attributes assigned
to the SC clips. The attributes have been introduced to clus-
ter the tracking performance depending on the visual vari-
ability events occurring on the target object. This evaluation
approach of assigning per-video labels is well-established in
the visual object tracking community [24, 30, 34, 42, 59, 81]
and was shown to be sufficiently robust to estimate the
trackers’ performance in particular scenarios. Among the
many attributes present in the literature, we selected 10 that
well represent the variability of the skiing domain. The la-
bels have been associated with SC clips of the date-based
training-test split because the SC experimentation setting
allows a tracker to cover the situations happening during
the skier’s descent in a more complete and consistent way
[24, 47]. Figure 8 shows the distribution of the SC clips ac-
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Figure 8. Distribution of the clip attributes. The plot shows
the number of single-camera (SC) clips associated with each of
the attributes introduced to characterize the visual variability of
the target, as in [24, 30, 59, 81]. The application domain of skiing
videos presents a large number of scale changes (SC), followed by
a substantial number of partial occlusions (POC), changes in the
aspect ratio (ARC), and fast motions (FM).
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Figure 9. Winter weather conditions. Skiing takes place in win-
ter environments, subjecting athletes to extreme weather condi-
tions that introduce unique image characteristics when captured
on camera. For instance, sunny conditions can create shadows,
resulting in significant variations in target illumination. Cloudy
weather leads to ”flat light” conditions, reducing image contrast,
while snowfall or rain further diminishes visibility. The SkiTB in-
cludes weather condition labels for each MC video.

cording to the labels. In SkiTB, the labels SC, ARC, FM,
and LR, have been assigned by an automatic procedure as
described by [30, 81]. The presence of situations identified
by the other attributes has been visually assessed and anno-
tated by our research team.
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Table 7. Selected sequence attributes associated to single-camera (SC) clips. This table gives the formal definition of the selected clip
attributes according to previous research in generic visual object tracking [24,30,81]. On a side, we give an interpretation of each definition
w.r.t. our application domain.

Attribute Definition Application-specific Interpretation

CM Camera Motion: an abrupt camera motion can be seen in the video clip. The camera operator moves the camera fast to keep the skier in the field of
view.

SC Scale Change: the ratio of the bounding-box area of the first and the current
frame is outside the range [0.5, 2].

The size of a skier’s appearance changes considerably during the video (e.g.
by zooming in/out on the target).

BC Background Clutter: the target has a similar appearance w.r.t. the surrounding
background.

The appearance of the athlete’s suit and equipment confounds with the ele-
ments in the background.

ARC Aspect Ratio Change: the ratio of the bounding-box aspect ratio of the first
and the current frame is outside the range [0.5, 2].

The ratio between the height and width of the athlete changes (e.g. due to
complex body poses).

IV Illumination Variation: the area of the target bounding-box is subject to light
variation.

The appearance of the target skier changes due to particular lightning condi-
tions (e.g. passing through slope areas under shadow).

POC Partial Occlusion: the target is partially occluded in the video. Part of the skier is hidden by another item (e.g. by a gate in AL).

MB Motion Blur: the target region is blurred due to target or camera motion. The appearance of the skier is blurred due to its fast motion or the fast motion
of the camera.

FM Fast Motion: the target bounding-box has a motion change larger than its size. The skier moves fast during the descent on the course.

FOC Full Occlusion: the target is fully occluded in the video. The skier is completely occluded by another item in the field of view (e.g. by
a kicker in FS).

LR Low Resolution: the area of the target bounding-box is less than 1000 pixels
in at least one frame. The skier appears small due to a low level of camera zoom.

A.3. Details on the Weather Labels

The weather labels have been associated with each MC
video because the weather condition generally remains the
same across all the location in which the skiing competition
takes place. The labeling of the conditions was performed
by our team by analyzing the condition visible in the video.
Such a label was also checked to match the one reported on
the official result list available on the FIS database [70]. The
labeling generated the following weather labels: “Clouds”,
“Fog”, “LowClouds”, “MostlyCloudy”, “Overcast”, “Part-
lyCloud”, “Raining”, “Snowing”, “Sunny”, “Clear”. In
order to have a larger number of samples for the exper-
iments, such labels have been clustered into three cate-
gories: “Sunny”, “Cloudy”, and “Harsh” weather. Figure 9
gives examples of the image condition such weather condi-
tion cause. In total, SkiTB provides 191 videos associated
with “Sunny”, 66 with “Cloudy”, and 43 associated with
“Harsh”. After the date-based training-test split, the test set
used to compute the results in Figure 7 has 80 “Sunny”, 26
“Cloudy”, and 14 “Harsh” videos.

Details on the Training-Test Splits. Table 8 shows some
statistics of the videos present in the three different training-
test splits generated to train and test skier-specific trackers
under different application conditions. The splits have been
generated to maintain a balanced distribution across the ski-
ing disciplines and sub-disciplines while aiming to keep
condition-specific disjoint partitions and respect as close as
possible a 60-40 ratio.

B. Details about the Trackers

In this section, we give some more details of the imple-
mentation of the selected trackers.

B.1. Generic Object Trackers

The generic object trackers have been selected to be rep-
resentative of the state-of-the-art solutions in the years be-
tween 2010-2023. They have been implemented by exploit-
ing the code originally provided by the authors along with
pre-trained weights. The original hyper-parameter values
leading to the best and most likely generalizable instances
of all the trackers have been set. Those trackers that do
not output a confidence score, were modified to return an
always-confident score of 1.0.

B.2. Skier-specific Trackers

YOLO-SORT. The YOLO-SORT tracker implements a
tracking-by-detection approach inspired by multiple object
tracking [5, 22]. At each frame of a video, this baseline
first detects skiers with an YOLOX instance [35]3 and then
exploits the Simple Online and Realtime Tracking method
(SORT) [5] to associate the new detections with previously
memorized tracklets. The YOLOX instance was trained on
all the frames and the associated bounding-box annotations
of SkiTB’s training set defined by the date-based split, by
mostly default hyper-parameters. The only changes made
are relative to the batch size, set to 16, and the number of
training epochs, set to 25. 10% of the training videos were
considered to build the set of validation images. The model
instance achieving the highest Average Precision (AP) on
such a subset was retained for inference during tracking.
The SORT module is initialized in the first frame with the
given skier’s bounding-box. At every other time step, it is
given in input all the detections given by YOLOX and re-
turns a new set of tracks. As output, we retain the bounding-
box associated to the track initialized in the first frame.

3https://github.com/ultralytics/yolov5
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Table 8. Statistics of SkiTB’s training and test splits. The following table reports some statistics of the three split that have been
created to evaluate the capability of learning-based trackers in generalizing to different application conditions. For generalizing to new
performances, the date associated to the videos has been used as splitting condition; for the generalization to unseen athletes, the athlete
IDs; to generalize to unseen courses, the course’s location information.

Generalization Condition New performances Unseen athletes Unseen courses
Split Train Test Train Test Train Test

# MC videos 180 120 176 124 182 118
# SC videos 1215 804 1151 868 1238 781
# frames 212793 140185 202052 150926 213093 139885
avg MC video seconds 39 39 38 41 39 40
avg SC video seconds 5.8 5.8 5.9 5.8 5.7 6.0
# sub-disciplines 11 11 11 11 11 11
# athletes 136 90 118 78 138 95
# athlete genders (M, W) (84, 52) (53, 37) (70, 48) (47, 31) (83, 55) (56, 39)
# athlete nationalities 21 22 22 21 23 20
# locations 124 61 122 92 99 62
# location countries 21 20 23 23 22 20

Algorithm 1 Pseudo-code of the procedure implemented by
the proposed STARKSKI while running on a video.

1: // Consider video V and ground-truth box b0
2: // Trackers initialization
3: Initialize STARKFT-SCwith F0 and b0
4: Initialize STARKFTwith F0 and b0
5: t← 1
6: repeat
7: bt, ct ← Run STARKFT-SC on Ft

8: if ct ≤ 0.5 then
9: bt, ct ← Run STARKFT on Ft

10: if ct > 0.5 then
11: // STARKFT-SC re-initialization
12: Re-initialize STARKFT-SC with Ft and bt
13: end if
14: else
15: // Compute bounding-box for STARKFT relocalisation
16: S ← H

5.0
// 5.0 is STARKFT search area’s factor

17: x∗
t ← clip(xt,

H
2
,W − H

2
)

18: y∗t ←
H
2
− S

2

19: b
(R)
t ← [x∗

t , y
∗
t , S, S]

20: Use b(R)
t to reset STARKFT’s box used to compute the search

area location
21: end if
22: Return bt, ct as output for Ft

23: t← t+ 1
24: until t = T

STARKFT. The STARKFT baseline implements a fine-
tuned version of the generic object tracker STARK
(STARK-ST50) [82]. To implement this tracker we ex-
ploited the publicly available code4 and adapted the model’s
tracking ability by fine-tuning on SkiTB’s training set, ac-
cording to STARK’s original training strategy. Mostly de-
fault hyper-parameters have been kept, except for the num-
ber of epochs in stage-one training, which has been set to
200.

STARKSKI. The pseudo-code of the procedure imple-
mented by the proposed skier-optimized tracking base-

4https://github.com/researchmm/Stark

line STARKSKI is given in Algorithm 1. The procedure
is composed of two skier-specific instances of STARK
(STARK-ST50) [82]. The first one, which we refer to as
STARKFT-SC, is a modified version of STARK that, at ev-
ery frame, computes the target bounding-box by exploiting
a higher-resolution search area located around the previous
target location. This is achieved by reducing the search area
factor from the original value of 5.0 to 3.0 (we determined
the value 3.0 by experiments) and fine-tuning as done for
STARKFT. In this way, we reduce the amount of back-
ground information present in the search area, thus increas-
ing the resolution of the target skier’s appearance and mak-
ing the tracker predict more accurate bounding-boxes dur-
ing single-camera tracking. Given the more limited search
area, STARKFT-SC performs better just in such conditions
where the target and camera motion are stable and consis-
tent across consecutive frames. In the other cases, i.e. in
those frames where STARKFT-SC is not confident in track-
ing the target (lines 8-13 of Algorithm 1), we exploit a
STARKFT instance configured as described in the previous
paragraph. This instance keeps the original search factor
with a value of 5.0 and thus is able to look for the target
in a larger frame area. The execution of this STARKFT’s
instance is generally triggered after a camera shot-cut and
during the complete occlusion of the target. We empirically
found beneficial to set the search area size of this instance
to match the frame’s height, by modifying the bounding-
box values that are used to compute the search area at the
next frame (lines 16-20 of Algorithm 1). The position of
such a box is set to be the latest confident box position pre-
dicted by STARKFT-SC, clipped to make the search area not
fall outside of the frame. Whenever STARKFT finds confi-
dently the target again, its predicted bounding-box and the
respective frame are used to re-initialize STARKFT-SC. We
found the re-initialization to work better than just relocating
STARKFT-SC on the STARKFT’s predicted bounding-box.

https://github.com/researchmm/Stark


C. Details on the Evaluation

In this section, we explain and motivate in more detail
the evaluation procedures implemented.

Evaluation Protocols. As mentioned in the main paper,
to run a tracker, we employed the OPE protocol introduced
in [81] which implements the most realistic way to run
a tracker in practice. The protocol consists of two main
stages: (i) initializing a tracker with a bounding-box of the
target in the first frame of the video; (ii) letting the tracker
run on every subsequent frame until the end and record-
ing predictions to be considered for the evaluation. To
obtain performance scores for each sequence, predictions
and ground-truth bounding-boxes are compared according
to some distance measure. The overall scores are obtained
by averaging the scores achieved for every sequence. As
in the default OPE, we use the ground-truth bounding-box
for initialization to evaluate the trackers in the best possi-
ble conditions, i.e. when accurate information about the
target is given. However, many deployment conditions do
not allow human labeling but instead require a completely
automatic athlete localization system (e.g. real-time ski-
ing performance analysis during broadcasting). To evaluate
trackers in similar conditions, we use an object detector to
predict the initial skier bounding box. Thus, we consider a
version of the OPE protocol where each tracker is initialized
in the first frame in which the YOLOX detector’s [35, 44],
fine-tuned for skier localization, provides a bounding-box
prediction with confidence score ≥ 0.5. The fine-tuning of
this detector was performed in the same way as for YOLO-
SORT mentioned before.

Performance Measures. To quantify the distance be-
tween the predicted and temporally-aligned ground-truth
bounding-boxes, we used different measures. As general
tracking accuracy indicators, we employed the metrics de-
fined by [54] for long-term tracking problems: Precision,
Recall, and F-Score. Due to the generally long video obser-
vation and presence of multiple occlusions, our problem of
interest is related to such a research framework. Now we ex-
plain the meaning of such metrics in relation to our applica-
tion case. The Precision (Pr ↑) measures the average amount
of correctly tracked ground-truth bounding-boxes where the
tracker is confident, with different thresholds used to de-
termine the conditions of correct and confident prediction.
In our case, the Pr ↑ score determines the average cover-
age of the skier’s position on the portion of skiing perfor-
mance observation on which the tracker is confident. For
example, a Pr ↑ score of 0.8 tells that an algorithm cor-
rectly localizes the athlete for the 80% of the bounding-
box predictions that are given with high confidence. The
Recall (Re ↑) instead measures the average amount of cor-

rectly tracked ground-truth bounding-boxes, regardless of
the tracker’s confidence. In our context, such a score de-
termines the average coverage of the position of the skier
throughout the whole skiing performance. For instance, a
Re ↑ score of 0.8 gives that the algorithm correctly localizes
the athlete for 80% of the skiing performance appearing in
the video. The F-Score (F-Score ↑) provides a single aggre-
gating score that incorporates both the previous measures.
The best value across the different confidence thresholds is
retained.

In addition to those metrics, we exploited the General-
ized Success Robustness (GSR ↑) [23,24] which reports the
fraction of continuous successful tracking before the tracker
is lost, measured as the temporal index of the first wrong
prediction normalized by the number of frames in the video.
In the context of this application domain, such a metric re-
ports the percentage of continuous coverage of the skier’s
performance before the target is lost by the tracking algo-
rithm. The original metric [24] is strict because it consid-
ers just the first wrong prediction to determine the tracker’s
failure time step. Other work [47] suggested a softer ver-
sion of such a measure. If the algorithm gets back to the
target within a range of 10 consecutive frames, the tracking
is resumed. Inspired by such a work, we evaluate the GSR
↑ with several different temporal ranges to detect a failure,
specifically 1 frame (0.03s), 7 frames (0.25s), 15 frames
(0.5s), 22 frames (0.75s), 30 frames (1s), 60 frames (2s),
and 90 frames (3s).

Finally, we assessed the computational efficiency of the
trackers. This has been done by quantifying the time differ-
ence (in seconds) between the time stamp associated with
each frame and the time instant on which the localization for
the respective frame is given by an algorithm. Considering
that sports performance analysis requires the processing of
all the frames for a smooth and continuous understanding,
a tracker that is slow will accumulate time while processing
all the frames and delay its predictions. Thus, it becomes
interesting to know how much time should be waited in or-
der to obtain the localization, and how such delay grows
during the online processing of the video. We give such a
measurement in seconds with Delay ↓.

C.1. Tracking Impact

As stated in the main paper, the output of tracking is
of paramount importance for many high-level modules that
produce fine-grained skiing performance analyses [29, 52,
53, 78, 80]. Thus we evaluated the trackers based on the
impact they have on the accuracy of such solutions. We
think that the development of effective tracking methodolo-
gies should be driven not only by tracking-specific results
but also by the contribution the algorithms bring in improv-
ing the accuracy of the overall system.

As an exemplar high-level skiing performance under-



Table 9. Overall and per-discipline results in the single-camera (SC) setting. The F-Score ↑, Pr ↑, and Re ↑ scores are presented for
each studied algorithm. This setting is easier to tackle by all the algorithms in general. The different skiing discipline pose challenges to
the trackers in the same way as in the multi-camera (MC) setting.
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0.299 0.376 0.572 0.592 0.601 0.651 0.681 0.664 0.704 0.694 0.658 0.717 0.763 0.854 0.858

AL
0.220 0.267 0.518 0.536 0.585 0.623 0.578 0.640 0.594 0.652 0.637 0.671 0.819 0.875 0.882
0.218 0.265 0.524 0.542 0.595 0.622 0.576 0.641 0.590 0.650 0.634 0.672 0.814 0.876 0.886
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JP
0.389 0.487 0.641 0.663 0.677 0.702 0.747 0.705 0.763 0.738 0.765 0.761 0.855 0.899 0.907
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FS
0.274 0.347 0.531 0.550 0.514 0.599 0.612 0.617 0.633 0.654 0.654 0.676 0.578 0.734 0.735
0.268 0.338 0.525 0.540 0.502 0.586 0.595 0.607 0.612 0.636 0.633 0.656 0.566 0.711 0.713
0.285 0.370 0.560 0.582 0.548 0.627 0.647 0.647 0.676 0.692 0.698 0.721 0.601 0.780 0.780

standing tasks to evaluate tracker’s impact, we focused on
the problem of 2D pose estimation of skier body and equip-
ment [1, 53]. This task serves to obtain information regard-
ing the position and orientation of specific human joints dur-
ing exercises, and such an output is additionally exploited
by even more high-level performance understanding mod-
ules such as 3D pose estimation [1, 79]. To estimate the
image-level coordinates of a set of key-points that local-
ize different parts of a skier’s body (e.g. head, shoulders,
hips, feet, etc.) and of particular points of interest of the
skier’s equipment (e.g. ski tips or tails), the available solu-
tions [1, 53] first run an object detector [66, 67] to compute
bounding-boxes for the athlete present in the input RGB im-
age, and then crop image patches from such boxes that are
successively given as input to a state-of-the-art deep neural
network architecture (e.g. AlphaPose [32]) that predicts the
key-point coordinates. Such a pose estimation network is
trained by fine-tuning on ground-truth poses by exploiting
input image patches extracted with bounding-boxes defined
by the coordinates of the annotated key-points.

The aforementioned studies [1, 53] propose datasets of
videos (with dedicated training and test sets) whose frames
are sparsely labeled with the poses of body and equipment.
The authors evaluate the proposed pipelines on such bench-
marks but treat each frame as an independent image, and
so during testing the object detector is run on every im-
age before the pose estimation network. Considering the
presence of videos, we use such datasets as a base for the
evaluation of trackers as athlete localizers executed before
the pose estimation step. Thus, we determine the tracker’s
impact by evaluating the accuracy of the pose estimation
model, where the input of the latter is influenced by the out-
put of the former. After having trained an AlphaPose in-
stance [32] on the original training images [1, 53], we eval-
uate its accuracy on the test frames by inputting it with a

patch extracted from a tracker’s box prediction. The evalu-
ation of the pose estimator is done through: the Percentage
of Correct Keypoints (PCK ↑) which measures the number
of predicted key-points, normalized by the number of all
key-points [1], having a pixel distance lower than the 50%
of the ground-truth-based head-neck distance; and the Mean
Per Joint Position Error (MPJPE ↓) which measures the nor-
malized pixel distance between predicted and correspond-
ing ground-truth key-points [1]. The tracker’s bounding-
boxes are obtained by implementing the OPE protocol on
the sequence of frames in between the first and the last pose
annotation occurrences that refer to the same athlete. In-
deed, we obtain boxes’s top-left and bottom-right vertices
by considering the lowest and greatest values in the key-
points coordinates. The first bounding-box is considered
for tracker initialization, while the others are for predic-
tion evaluation. We respect the original training-test separa-
tions [1, 53]. For testing alpine skiing (AL) pose estimation
on the Ski2DPose dataset, we used 11 video clips related to
the 150 pose annotated images, while for pose estimation in
ski jumping (JP) on the YouTube Skijump dataset we used
19 videos referring to the 118 annotated test images.

For the implementation and training of the AlphaPose in-
stance [32], we employed the Alphapose v0.6 framework.5

Specifically, we conducted two separate fine-tuning based
on the ResNet50 model for Ski2DPose and YouTube Ski-
jump. Both training sessions run for 250 epochs, employ-
ing a batch size of 32 and a learning rate of 0.001 de-
creased by a 0.1 factor every 70 epochs. During both train-
ing and testing, in the computation of the input image crop,
a padding of 20% was added to the dimensions of the avail-
able bounding-box.

5https://github.com/MVIG-SJTU/AlphaPose
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C.2. Implementation Details

All the code used for our study was implemented in
Python and run on a machine with an Intel Xeon E5-2690
v4 @ 2.60GHz CPU, 320 GB of RAM, and 8 NVIDIA TI-
TAN V GPUs.

D. Additional Results
This section reports the results of additional experiments

we conducted.
Table 9 presents the performance achieved by the se-

lected trackers in the case of skier tracking on SC videos.
This setting is more similar to the problem of short-term vi-
sual object tracking [54,81] where the duration of the videos
is shorter and they are captured by the same video cam-
era (no camera shot-cuts are present). Application-wise,
the conditions of SC tracking align with: the broadcast-
ing requirements of skiing performance replay where just
a specific section of the skiing performance is captured and
played again; training processes where a trainer captures a
specific section of the ski track/course with a smartphone
for later video analysis. From the table, we observe that
tracking a skier without camera-shots results easier in gen-
eral. Generic object trackers show a larger improvement by
tracking on SC videos than on MC ones. However, their
tracking accuracy still remains lower than the skier-specific
methods. Regarding the skiing disciplines, we notice that
FS videos still cause the major drop in the overall perfor-
mance.

D.1. Videos

Videos showing qualitative results of STARKSKI on
SkiTB are available at https://machinelearning.
uniud.it/datasets/skitb.

https://machinelearning.uniud.it/datasets/skitb
https://machinelearning.uniud.it/datasets/skitb
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