
Supplementary Material for
HMP: Hand Motion Priors for Pose and Shape Estimation From Video

1. Additional Experiments

1.1. HO-3D Test Split Results

We report quantitative results over the HO3D test split in
Tab. 1. In addition to mean-per-joint-projection error (PA-
MPJPE) and vertex-to-vertex error (PA-V2V) we provide
the F-scores after procrustes alignment: PA-F@5, and PA-
F@15. Those values are obtained from the official evalu-
ation server using the test set of HO-3D. Since we do not
have the ground-truth labels for the test set, we cannot com-
pute and report RA-ACC.

Recent methods utilize HO3D and DexYCB as their
primary training datasets. However, given the limited
background and subject diversity inherent to HO3D and
DexYCB, methods solely trained on these datasets strug-
gle to generalize effectively to in-the-wild videos. In con-
trast, neither PyMAF-X nor our motion prior relies on these
datasets for training, thereby enhancing their generalization
to in-the-wild scenarios. Consequently, directly comparing
our method with those trained on HO3D and DexYCB can
be challenging. To signify this distinction, we have marked
such methods with † in the corresponding tables. Over-
all, our method outperforms the existing state-of-the-art
(SOTA) techniques on the HO3D-test split. Furthermore,
our approach enhances the performance of the PyMAF-X
method, which we employ for initialization, across both
datasets.

HO3D-v3
Methods PA-MPJPE ↓ PA-V2V 2V ↓ PA-F@5 ↑ PA-F@15 ↑

Hasson et al. † [4] 11.4 11.4 42.8 93.2
Hasson et al. † [5] 11.1 11.0 46.0 93.0
TempCLR† [15] 10.6 10.6 48.1 93.7
Hampali et al. † [2] 10.7 10.6 50.6 94.2
Liu et al. † [8] 10.1 9.7 53.2 95.2
Deformer† [1] 9.4 9.1 54.6 96.3
HandOccNet† [11] 9.1 8.8 56.4 96.3

PyMAF-X [13] 11.2 11.0 47.6 92.8
HMP (Ours) 10.2 9.9 51.0 94.6

Table 1. State-of-the-art comparison on the test split of HO3D-v3
dataset [3]. Methods denoted with † uses HO-3D as their training
dataset.

MP Type Diversity ↑
PCA-based 5.83

GMM-based 5.79

HMP (Ours) 5.86

Table 2. Diversity metrics for different motion prior types

1.2. Sample Diversity of Different Motion Priors

We report the sample diversity metrics for PCA-based
motion prior, GMM-based motion prior, and our motion
prior in Tab. 2. All motion priors are trained on the same
sequences from the AMASS dataset. We follow the same
evaluation criteria as [6].

2. Additional Qualitative Results & Remarks
Obtaining 2D Pose Confidence: We use keypoint con-

fidences to weight L2D. Unfortunately, MediaPipe does not
provide separate confidences for hand keypoints [9]. To
obtain confidence keypoints, we augment with 11 different
views through random rotation and scaling. We perform de-
tection on these views and project the results back. For each
joint with index j we compute an std value σj :

σ2
j =

1

N

N∑
n=1

(Pn − P0)
2. (1)

Here P0 and Pn denotes the original view and n’th view ob-
tained by random scaling and rotation. To discard anoma-
lies, we clip the std values by an upper threshold γ:

σj = min (σj , γ). (2)

We then compute confidence value as,

αj = 1− σj

γ
. (3)

We set N=11 and γ = 4.
Qualitative Results: We provide more qualitative re-

sults on DexYCB dataset and in-the-wild videos in Fig. 1,
2, and 3. We refer the readers to our SupMat video for more
results.
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Figure 1. 3D hand pose and shape estimation on an in-the-wild
video: input video (top), PyMAF-X (middle), HMP (bottom)

Hyperparameter Value

Epochs 1000
Batch Size 16

Learning Rate 1e-4
Weight Decay 1e-4

Latent Dimension 1024

Table 3. Hyperparameter setting in motion prior training

3. Training A Hand Motion Prior

Data Preprocessing: We adopted a similar approach
to data preprocessing as [6, 12]. GRAB, TCDHands, and
SAMP datasets in AMASS have hand articulation [10]. We
only train motion prior for the right hand. We first re-
flect left hand articulations in the dataset for data augmenta-
tion. Then all sequences are divided to motion clips of 128
timesteps. These clips are preprocessed to obtain processed
data X. For any timestep t, the processed data point Xt is,

Xt =
(
xp
t ẋp

t xr
t ẋr

t

)
∈ RJ×15. (4)

For a timestep t, xr
t ∈ RJ×3 denotes joint positions, ẋp

t ∈
RJ×3 denotes joint velocities, xr

t ∈ RJ×6 denotes hand
pose in 6D rotation representation [14], ẋr

t ∈ RJ×3 denotes
angular velocity. J indicates the number of joints.

Architecture: The architecture is adapted from [6].
We employed the Adam optimizer [7]. The training pro-
cess takes ∼10 hours on NVIDIA-A100 GPU. Our motion
prior contains parameters contains ∼63.4 million parame-
ters. Please refer to Table 3 for hyperparameter values.
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Figure 2. 3D hand pose and shape estimation on an in-the-wild
video: input video (top), PyMAF-X (middle), HMP (bottom)

4. Failure Cases
Keypoint Detection Failure: One key cause for our

method’s failure is inaccurate keypoints. Under motion
blur and occlusion, current state-of-the-art keypoint detec-
tors tend to fail providing correct detections. Fig. 5 shows
those cases along with our methods’ output.

Bounding Box Discontinuity: Another risk of failure
originates from hand bounding box detection. Our method
fails to interpolate and perform motion inbetweening. This
usually happens with motion blur. An example can be seen
in Fig. 4.
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Figure 3. 3D hand pose and shape estimation on DexYCB videos: input video (top), PyMAF-X (middle), HMP (bottom)

Figure 4. Failure in motion inbetweening due to the discontinuity in bounding box detection. Bounding boxes are detected only for the
first and the final frame.
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Figure 5. Failure cases caused by faulty keypoint detections. Keypoints detected (top), HMP (bottom)
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