
Supplementary for POISE: Pose Guided Human Silhouette Extraction under
Occlusions

1. Generating Occluded Images

We employ Random Erase occlusion to introduce occlu-
sions of varying severities K into the images. The severity
of the occlusion directly affects the size of the occlusion
patch, controlling its height and width. Specifically, we
consider five different occlusion severities: 12, 16, 20, 24,
and 28. To clarify, an occlusion severity of K implies that
the height and width of the occlusion patch are randomly
selected within the range of 2K to 2(K + 8). For instance,
for an occlusion severity of 12, the height and width of the
occlusion patch are randomly chosen between 24 and 40
pixels. For the BRIAR dataset, we add COCO occlusions to
the frames which helps in creating a more balanced training
setup. Figure 1 shows a few examples of occluded images
generated from the CASIA-B and the UP-S31 datasets.

Figure 1. Examples of generated occluded images. Left: Occluded
CASIA-B image with Random Erase Occlusion (at K = 12). Middle:
Occluded UP-S31 image with Random Erase Occlusion (at K = 12). Right:
Occluded UP-S31 image with COCO Occlusion.

.

2. Implementation Details

The networks are trained for a total of 100 epochs and
with a batch-size of 32 and results are reported at the 100th

epoch. The initial learning rate is set 1e − 2, which is de-
cayed by a factor of 0.1 after the 5th and 20th epochs. For
all experiments, λ1 and λ2 in the training objective were
set to 0.1 and 1 respectively. λ3 was also set to 1 for all
experiments except human segmentation of UP-S31 dataset
with COCO occlusions, where it was set to 0. The models
are optimized with the Adam optimizer [5].
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Figure 2. Qualitative results on BRIAR. Silhouettes extracted using
POISE compared against IS and IP for COCO occlusions in the Hu-
mans3.6M dataset.
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Figure 3. Qualitative results on Random Erase occlusions. Silhouettes
extracted using POISE compared against IS and IP for Random Erase
occlusions at severities of 12 and 20 on UP-S31.

3. Qualitative Results

In this section we provide additional qualitative results on
Humans3.6M [4] , UP-s31 [7], CASIA-B [9] and BRIAR [2]
datasets.

Figure 2 shows the efficacy of POISE over IS and IP
on the Humans3.6M dataset under COCO occlusions. Simi-
larly, figures 3 and 4 show the improvements obtained by
POISE over IS and IP on UP-s31 dataset under Random
erase and COCO occlusions respectively. Figure 5 shows the
efficacy of POISE on the CASIA-B dataset. Figure 6 shows
the efficacy of POISE in natural unconstrained settings in
the BRIAR dataset, where despite atmospheric turbulence
and heavy natural occlusions (due to inanimate objects and
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Figure 4. Qualitative results on COCO occlusions. Silhouettes extracted
using POISE compared against IS and IP for COCO occlusions on UP-
S31.
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Figure 5. Qualitative results on CASIA-B. Silhouettes extracted using
POISE compared against IS and IP for Random Erase occlusions at
severities of 12 on CASIA-B dataset.

ground vegetation) it performs optimally.
These qualitative results show the inherent ability of

POISE in learning robust feature representation which aids
in obtaining complete human silhouettes under occlusions.

4. Experiments using SOTA instance segmenta-
tion models

In this section, we provide a study on recent state-of-
the-art segmentation models which despite being trained on
larger and more robust datasets fail to handle occlusions in
practical real-world settings. We study two such recent mod-
els MaskDino [8] and Segment Anything (SAM) [6]. In Fig
7, we demonstrate the inadequacy of state-of-the-art (SOTA)
methods in addressing occlusion due to their reliance on
pixel-wise classification. When pixels are part of an occlu-
sion in front of a human, these models fail to identify them,
rendering them impractical. Moreover, our findings indicate
that POISE enhances SOTA results, surpassing MaskDINO
by approximately 5% (from ≈ 80 % to 85 %) in terms of
segmentation accuracy on the Humans3.6M dataset.

5. POISE for Gait Recognition

In tables 3, 4 and 5 of the main draft, we observe that
POISE outperforms both IS and IP by significant margins.
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Figure 6. Qualitative results on BRIAR. Silhouettes extracted using
POISE compared against IS and IP for natural occlusions in the BRIAR
dataset.

Figure 7. Comparison of SOTA segmentation methods like MaskDINO
and SAM for extracting human silhouette under occlusion. We can see that
SOTA methods fail to capture body parts that are behind the occlusion.
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The main reason behind such results is that POISE is able to
have a complete human silhouette under occlusions - which
preserves both body-shape specific information and walk-
ing pattern. While IS retains body-shape, it might fail to
preserve the walking pattern for persistent lower-body oc-
clusions in a video. Similarly, utilization of Pose2sil (g)
in isolation does not yield optimal outcomes as it lacks the
inherent human body shape, despite preserving the walking
pattern.

When the BRIAR dataset [2] is juxtaposed to CASIA-
B dataset [9], we observe that, several videos suffer from
heavy occlusions from inanimate objects (such as traffic
cones) and ground vegetation, wherein the entire lower body
of the human is hidden behind the occlusion, as shown in
figure 6. In such situations, the walking pattern information
is absent in IS , which is reasonably preserved in IP . This
explains the superior performance of IP over IS on the
BRIAR dataset.

For the CASIA-B dataset [9], small artificial occlusions
only affect a limited region of the image as compared to the
large occlusions in the BRIAR dataset that conceal almost
the entire lower half of the human body. Due to these small
occlusions, IS is fairly close to the complete human silhou-
ette seen in figure 5. This explains why performance of IS
is superior to IP for CASIA-B dataset.

It is important to highlight that our fusion of IS and
IP in POISE , effectively retains both body-shape specific
information and the distinctive walking style. This greatly
contributes to the superior performance of POISE in compar-
ison to IS and IP across both datasets. This outcome under-
scores the robustness and generalization ability of POISE .

5.1. Effects of enhanced silhouettes

In an ideal scenario, an improved silhouette should di-
rectly lead to enhanced gait performance using the same
feature extractor weights. To test this hypothesis, we uti-
lize the BRIAR dataset with IS , IP and POISE silhouettes,
with the model [3] pre-trained on CASIA-B [9]. Table 1
shows that simply using POISE silhouettes without any fur-
ther training of the gait recognition model can lead to much
higher gait recognition performance as compared against IS
and IP , thus underscoring the effectiveness of POISE .

Gait Algo. Method Acc@Top1 Acc@Top2 Acc@Top3

GaitBase [3] IS 5.95 13.00 18.93
IP 15.02 21.61 24.90

POISE 15.84 21.81 26.34

Gaitset [1] IS 8.56 14.77 18.56
IP 13.15 20.57 26.13

POISE 13.58 22.43 27.16

Table 1. Results for Gait recognition on BRIAR dataset with fixed feature
extractor.
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