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1. Additional visual results
We present additional visual results comparing RegNeRF [2] to the proposed regularization framework (with both depth

regularization and normals regularization) in Fig. 1.

2. Parameters study for surface estimation
In Fig. 2, we show the impact of the two parameters controlling the loss, namely the regularization weight λcurv and

clipping value κcurv, on a specific example of the DTU dataset [1] using Gaussian curvature. A very small weight and a
strong clipping (λcurv = 0.0001 and κcurv = 1) leads to barely no regularization as expected. On the contrary, a large weight
with little clipping (λcurv = 0.001 and κcurv = 10) learns a sort of envelope of the surface. The most interesting results,
however, are obtained with intermediate parameters. For example, λcurv = 0.0005 and κcurv = 5 produces a surface that is
both strongly regularized while keeping most of the details. Another interesting result is that of λcurv = 0.001 and κcurv = 5,
which leads to a Cubist-style surface, with little details and exaggerated edges. Such models might be interesting to learn a
surface that can be represented by a mesh with few triangles or for deriving a piece-wise developable surface [3]. Note also
how the regularization has a tendency to fill small gaps (for example the mouth of the bunny is completely regularized with
parameters λcurv = 0.0001 and κcurv = 10). This shows the importance of clipping to preserve small details and the limits of
such type of regularization. This study was done using VolSDF [4].
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Figure 1. Visual examples of novel view synthesis for the flower (top) and fortress (bottom) sequences of the LLFF dataset after training
with three views.
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Figure 2. Study of the impact of the two parameters controlling the strength of the regularization, i.e. the regularization weight λcurv and
the clipping value κcurv , on the scene 110 of the DTU dataset. While intermediate parameters, such as λcurv = 0.0005 and κcurv = 5,
provide a good balance between detail preservation and surface smoothness, strong regularization can produce surprising surfaces such as
the Cubist-like representation given by λcurv = 0.001 and κcurv = 5. These results were computed using the Gaussian curvature. Results
best seen zoomed.


