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A. Selection of Compared Methods and HEVC Comparison

Our paper presents a new and significantly more realistic benchmark than prior works. This required a significant time
investment to identify working code releases and retrain compared methods. Some readers may take issue with our particular
selection of comparison methods in the body of the paper given that newer methods than those we compared to exist (although
we are “current” up until last year at the time of writing), so we address this up-front here. When selecting comparison methods,
we divided them into three groups:

Methods with readily available code MFQEv2 (2021), STDF (2020)
Methods with partial code RFDA (2021)
Methods with no code All newer methods (Xu et al. (2021), PSTQE (2021)) and MFQEv1 (2018)

The goal of this exercise is to prioritize which methods we can reasonably compare to. Methods with readily available code
can be re-trained and evaluated in a pain-free manner. Methods with partial code required some time investment to correct the
code. Methods with no code would require re-implementation which is both time consuming for us and tricky to do in a fair
way to the original authors. Optimizing this time-effort-fairness objective precluded us from re-evaluating the methods with no
public code.

We note that RFDA has a partial public code release which is not fully functional particularly for retraining (we encourage
readers to verify this by visiting the code at https://github.com/zhaominyiz/RFDA-PyTorch). However, we
were able to make the training code functional by filling in details from the paper or correcting the existing code. This was
verified by reproducing the paper results to within rounding error reported in the paper. We also note that the PSTQE authors
have released the model definition but this alone is not enough to completely train the model even including any training
details described in the paper. We opted not to include PSTQE since the training procedure could not be guaranteed to be fair
and it would require a significant engineering effort on our part.

In the spirit of further fair comparisons we now show HEVC constant QP results compared to all prior art known to us at
the time of writing (we do not claim to have an exhaustive list, nor do we believe a large table necessary to demonstrate that
our method works). Since this is the less realistic benchmark which was reported in previous papers we do not have to retrain
and we can simply copy the numbers into Table 1 allowing for these additional comparisons. To produce our numbers, we
followed the same procedure prescribed in prior works by training a separate model per CQP. In this setting, only the recent
work by Xu et al. [1] is really competitive with our method albeit with the IQE module which adds significant computational
overhead. Given that we cannot perform independent testing of their method, it is unclear if that would generalize to more
realistic compression benchmarks. It is also unclear to us if our QP cross attention mechanism is contributing in a constructive
way to the performance of our model when the QP map is constant for all frames. We respectfully remind the skeptical reader
that benchmark results are one aspect of our overall work and are not, were never intended to be, and should not be, a primary
contribution.

B. GAN Architecture Details

Chu et al. [9] introduce a temporally consistent formulation for video GAN discriminators. We adapt their idea in our GAN
loss which is otherwise based on DCGAN [10]. The architecture is shown in Figure 1.

Our critic operates on triplets of the compressed frames C', network outputs O, and target frames 7'. The input frames are
stacked channelwise, in other words Cy g, Co.G, Co B, ---Cs r, Cs,G, Cs.8 for all frames in the GOP are stacked channel-wise
along with the corresponding O or T frames to create a 42 channel input (3 channels per frame, times 7 frames, times 2). The
task for the critic, then, is to determine whether the 7" or O channels are network outputs or uncompressed frames given the
compressed reference frames and otherwise operates as standard DCGAN. The output is used in a Wassertein GAN loss [11].

This encourages temporal consistency because the critic is judging the entire 7-frame sequence as an example as opposed
to other video GANs which treat each frame as an different example. In the later case, there may be situations in which one
frame is judged to be more real than another, and yet all frames are equally “real” or “fake”. This “reallness” or “fakeness” of
the sequence vs. the frames is better captured by the formulation of Chu et al. [9]. Note that for our task we define “fake” as
the restored network output and “real” as the uncompressed version of the image.

C. Compression Details

The MFQE [2] dataset is stored as a series of uncompressed raw (. yuv) videos of known resolution and frame count. We
compress these videos using ffmpeg [12]. For H.264, we use the libx264 encoder with the following command:


https://github.com/zhaominyiz/RFDA-PyTorch

Table 1. HEVC Comparison. We report APSNR (dB) 1/ ASSIM 1, averaged over the MFQE [2] test split. This matches exactly with prior
works. Note that STDF does not test on QP42. Best in bold, second best underlined.

Method HEVC CQP
22 27 32 37 42

MFQE 1.0[2] 0.31/0.0019 0.40/0.0034 0.43/0.0058 0.46/0.0088 0.44/0.0130
MFQE 2.0 [3] 0.46/0.0027 0.49/0.0042 0.52/0.0068 0.56/0.0109 0.59/0.0165

STDF-R1 [4] 0.51/0.0027 0.59/0.0047 0.64/0.0077 0.65/0.0118 -

STDF-R3 [4] 0.63/0.0034 0.72/0.0057 0.86/0.0104 0.83/0.0151 -
RFDA [5] 0.76/0.0042 0.82/0.0068 0.87/0.0107 0.91/0.0162 0.82/0.0220
PSTQE [6] 0.55/0.0029 0.63/0.0052 0.67/0.0083 0.69/0.0125 0.69/0.0186
Xuetal-SQE[1] 0.83/0.0046 0.92/0.0077 093/0.0116 0.85/0.0158 0.79/0.0218

S2SVR [7] - - - 0.93/0.0176 -
Xuetal-IQE[1] 0.96/0.0053 1.09/0.0092 1.08/0.0136 1.03/0.0190 0.89/0.0241

BasicVSR++[8] 0.90/0.0050 1.04/0.0091 1.06/0.0128 0.99/0.0178 -
MetaBit (Ours) 1.20/0.0109 0.99/0.0117 0.99/0.0131 0.90/0.0232  0.84/0.0294

ffmpeg ffmpeg -video_size <WIDTH>x<HEIGHT> \
—framerate 10 \
-i <INPUT> \
-preset medium \
-vcodec libx264 \
—crf <CREF> \
-x2640pts <OPTIONS>\
[OUTPUT]

where <OPTIONS> is defined as:
keyint=7:min-keyint=7:no-scenecut:no-fast-pskip:me=esa:subme=7:bframes=0:ag-mode=2

This produces a compressed . mp4 file for later use (to be read as-is or converted back to raw . yuv for compatibility with
prior work). Many of these options are simply there to ensure a 7 frame GOP which is a requirement of the model we presented
in the body of the paper (but not a requirement of the general method which we presented). Please note the —framerate
10 argument: CRF is sensitive to framerate, so different framerates will incur different degradation strengths. Our choice of 10
was arbitrary and motivated primary by recommendation of Li et al. [13].

For H.264 in “streaming mode” (Appendix D) we use the following command in order to be consistent with deep-learning-
based compression works:

ffmpeg -video_size <WIDTH>X<HEIGHT> \
-framerate 30 \
-1 <INPUT> \
—crf <CRF> \
—-preset medium \
-vcodec 1libx264 \
-pix_fmt yuv420p \
-x2640pts keyint_min=10000:bframes=0 \
<OUTPUT>

Here, keyint min=10000 ensures that there is only a single I-frame per video.

For H.265, prior works evaluated on the HM reference codec, which is notoriously slow. For any models which we retrained
on H.265 data, we instead use libx265 which incurs no appreciable change in degradation (Figure 2) and is significantly faster
than HM. To generate these videos we used the following command:
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Figure 1. Wasserstein GAN Critic. Inputs (top) are RGB channels for all 7 frames stacked in the channel dimension. The compressed
frames are concatenated with the restored or target frames for a 48 channel input. This is then processed by 8 downsampling convolutional
layers as in DCGAN to produce the critic output.

ffmpeg -video_size <WIDTH>X<HEIGHT> \
-i <INPUT> \
—-vcodec 1ibx265 \
—-gp <QP> \
-x265-params <OPTIONS> \
<OUTPUT>

for <OPTIONS>:
keyint=7:min-keyint=7:no-scenecut:me=full:subme=7:bframes=0:gp=<QP>

Note that QP is specified twice and there is no longer a need to control for framerate. We strongly recommend that future
works use 1ibx265.
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Figure 2. Codec Comparison. HM reference encoder vs. 1libx265 at QP37. While the artifacts produced by the different encoders are
different, the overall perceptual quality is similar. This is likely because of CQP encoding which does not leave many options for the encoder
to make intelligent rate-distortion decisions.
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Figure 3. Streaming Mode. In streaming mode, the last restored P-frame in each block is cached and used instead of an I-frame for the next
block.

D. Streaming Mode

In many streaming applications, only a single I-frame is ever transmitted, with every subsequent frame stored as a P-frame.
This saves bandwidth and decreases latency at the expense of quality. The model as described in the body of the paper requires
a 7-frame GOP with a single I-frame followed by 6 P-frames, however, our model can be easily modified to operate in what
we call “streaming mode”.

In streaming mode (Figure 3), our method performs a 7-frame restoration as usual on the first 7 frames which include the
I-frame. The last restored P-frame (frame 7) is cached and used in place of the I-frame for the next 6 P-frames. This process is
repeated for all subsequent groups of 6 P-frames, eliminating the need for a periodic high-information frame. This comes at a
small cost to restoration performance however it also greatly reduces the bitrate of the H.264 videos. This mode was used to
produce the rate-distortion comparisons to deep-learning based compression which requires aggressive settings to match the



bitrates reported in the compared works. Adding periodic I-frame incurs a large increase in bitrate. Note that this does not
require retraining the model, it is only a change to the inference procedure.

E. Additional Qualitative Results

In this section we show additional qualitative results. These results are intended to showcase particular strengths and
weaknesses we observed in our model, and are explained further in the figure captions. We encourage viewing the video files
contained in our supplementary material to observe temporal consistency issues we noticed due to fluctuating compression
artifacts.

1.

Dark Region Figure 4 highlights a known failure mode of compression causing additional information loss in dark areas
in an image.

. Crowd Figure 5 shows our model performance on a dense crowd

. Texture Restoration Figure 6 shows an additional result of our model generating a plausible reconstruction of an artificial

texture

Compression Artifacts Figure 7; one particular failure mode we observed was compression artifacts, particularly chroma
subsampling artifacts, mistaken as a degraded texture and restored by the GAN, creating texture where none exists in the
original images

. Motion Blur Figure 8. Another common occurrence is missing motion blur in reconstructed images. There are several

issues that lead to this: 1) high motion frames are largely absent from the training data, 2) motion blur is largely destroyed
by compression, and 3) the reconstruction loss is explicitly rewarded for generating sharp restorations, whereas in this
case we actually want a blurry reconstruction.

Artificial Figure 9; in this scene from the short film “Big Buck Bunny”, the frame is restored quite accurately despite a
lack of artificial training data.



Figure 4. Dark Region. Crop from 2560 x 1600 “People on Street”. The dark region, is poorly preserved by compression. Our GAN
restoration struggles to cope with the massive information loss in this region.

Figure 5. Crowd. Crop from 2560 x 1600 “People on Street”. The image shows an extremely dense crowd. Despite the chaotic nature, our
GAN is able to produce a good restoration although there is detail missing.

..

Figure 6. Texture Restoration. Crop from 1920 x 1080 “Cactus”. The texture on the background is destroyed by compression. Our GAN
reconstructs a reasonable approximation to the true texture.




Figure 7. Compression Artifacts Mistaken for Texture. Crop from 1920 x 1080 “Cactus”. The compressed image exhibits strong chroma
subsampling artifacts (lower right corner). These are mistaken by the GAN is a texture and restored as such.

Figure 8. Motion Blur. Crop from 1920 x 1080 “Cactus”. The tiger exhibits high motion which presents itself in the target frame as motion
blur. This blur is destroyed by compression and is not able to be restored by the GAN loss. The GAN loss is also “rewarded” for sharp edges
which would make reconstructing blurry objects difficult. As an aside, note the additional detail on the background objects in the GAN
image when compared to the compressed image.

ey

Figure 9. Artificial. Crop from 1920 x 1080 “Big Buck Bunny”. This artificial scene is restored accurately despite a lack of artificial training
data. Note the grass and tree textures, sharp edges, removal of blocking on the flower, and preservation of the smooth sky region.
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