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A Related Works

A.1 Diffusion Models for Synthetic
Image Generation

Recently, diffusion models have witnessed remarkable
successes in various fields [26, 28, 34], revolutioniz-
ing the way of generative neural networks. From
generation of natural language [18, 10] to computer
vision [3, 26, 28] and beyond [23, 12], these mod-
els have shown unparalleled capabilities in under-
standing and generating data. Specifically, in com-
puter vision, diffusion models have excelled in gen-
erating high-quality and realistic visual contents for
tasks such as text-to-image generation [26, 28], super-
resolution [16], inpainting [28, 34], etc. Moreover,
their ability to handle uncertainty and generate di-
verse outputs has made them exceed previous gener-
ative models.

A.2 Image Data Augmentation

Thus diffusion models are used to generate synthetic
images to help with image classification. [11] demon-
strated synthetic data from GLIDE [22] improves
zero-shot and few-shot image classification perfor-
mance. And [1] proves that synthetic data from Im-
agen [30] improves image classification performance
on ImageNet [5]. However, those approaches are not
able to generate objects bounded tightly by a given
box, and thus are not applicable for object detection
tasks.
Recent works try to utilize diffusion models to-

gether with the copy-paste method [9] to improve
the performance of object detection. [7] use im-
age captioning [27] model to guide the generation

for DALLE [26], and used off-the-shelf segmentation
model [24] to cut off the object from the synthetic
image then paste to real images. While [37] used
a fixed prompt and also used off-the-shelf segmenta-
tion models [25, 32, 20, 21] to cut the objects off.
However, there is a concern that the image gener-
ated by copy-paste methods are not realistic [3], and
the captioning method [27] is trained on COCO[19]
which may cause a data leakage for experiments on
COCO [19] and PASCAL VOC [6].

Controllable diffusion models showed the ability to
manipulate and guide the generation process while
maintaining the advantages of the diffusion process.
The novel concept of controllability enables users to
have fine-grained control over the generated contents.
For example, layout-to-image generation [4, 14] takes
the layout description as input and synthesizes an
image that corresponds to the given layout. How-
ever, such models always require large object detec-
tion datasets for pretraining and the effectiveness to
help object detectors are not shown. [3] for the first
time showed that a layout-to-image model can pro-
duce synthetic images to help the training of object
detection models, while it requires to use the detec-
tion data to train the diffusion model first. [36]
emerged as a crucial component of controllable dif-
fusion, making it possible to guide the text-to-image
generation with visual priors like edge maps [2, 33],
segmentation masks [17], scribbles [33], etc. And it
inspires us to build a pipeline generating synthetic
images with tight bounding box annotations.



B More Metrics for Important
Experiments

We reported only mAP and AP50 for most experi-
ments due to space limits. Here we add results on
more metrics, i.e. AP75 and mAP-s/m/l, for more
detailed comparisons.

B.1 Few Shot

Table 1 reports mAP, AP50, AP75, mAP-s, mAP-
m, mAP-l for the experiments on COCO [19] un-
der few shot settings. Our approach generally im-
proves the detectors’ performance by a large margin.
An interesting finding is that inpainting methods are
sometimes better than our approach on metric mAP-
s, which shows that using inpainting may be better
when drawing small objects.

B.2 PASCAL VOC and Object Detec-
tion in the Wild

Table 2 also add AP75, mAP-s/m/l in addition
to previous results for YOLOX-S [8] on PASCAL
VOC [6] and downstream datasets [13, 15, 31, 29].
In general our approach boosts the object detection
performance significantly. The performance drops in
Plantdoc [31] and Deepfruits [29] are largely due to
the similar appearance in object edges among differ-
ent categories. For instance, given a HED edge map
as input, the model may get confused to distinguish
a healthy leaf over a defected leaf, and is not able to
generate the correct data given only the HED map
and the prompt as input. This remains a future work
for us to further explore.

B.3 Other Visual Priors

Table 3 compare the HED visual prior and other vi-
sual priors (i.e., Canny edge map [2], Uniformer seg-
mentation mask [17], Scribble edge map [33, 36]) as in
the body part of the paper, but further report AP75,
mAP-s, mAP-m, mAP-l in addition to previous mAP
and AP50 metrics. From Canny [2], HED [33], Uni-
former [17], to Scribble [33, 36], the control of visual

prior turns from fine to coarse. The experiment re-
sults suggests us to choose a medium control level like
HED [33] or Uniformer [17] that does not include too
many details of the object or noises, nor too coarse
to lose the robustness and cause more distortions.

For the algorithm to generate Scribble edges, see
here [33, 36].
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