Dynamic Multimodal Information Bottleneck for Multimodality Classification:
Supplementary Materials

1. Preliminary Definitions

Given continuous random variables X, Y, Z, supported on
X, Y, Z with probability distributions px, py,pz:

() The definition of mutual information of X and Y and its
relation to information entropy:
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(i1) The conditional mutual information of X and Y given
Z is defined as:
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2. Proof of I(f; f*) = I(f: f*|ly) + I(y; f*)

Proof. We have I(f*;y) = H(f*) — H(f"[y) by Eq.(1).
Furthermore, since f* is obtained (deterministically) from
f, we have ps ¢« (f, f*) = pg(f). Therefore, I(f; f*) =

lo

dxdydz

E[-logps-(f*)] = E [log AL = H(f*) and
similarly, I(f; f*ly) = H(f*|y). Combining these, we

have the desired result. O

3. Proof of Proposition
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Using Jensen’s inequality and the fact that —log is
strictly convex, we can show that the KL-divergence is al-
ways non-negative and the equality only holds when the dis-
tributions are equal almost-everywhere, which is proven as



Table 1. Clinical variables in ITAC and percentage of missing data

# 1 2 3 4 5 6 7 8 9

Variable Age Oxygen saturation Platelets Measured saturation oxygen | Respiratory rate | PO2 | D-Dimer | Cough | Dyspnea

Missing (%) | O 7.60 4.42 35.69 42.76 31.45 | 44.52 N/A N/A

# 10 11 12 13 14 15 16 17 18

Variable Diabetes | Neurological disease | Other CV disease | Admitted to ICU Glucose Urea | eGFR GOT PCR

Missing (%) | N/A N/A N/A N/A 15.72 724 | 171 24.56 | 1643
below:
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where P and (@ are two arbitrary distributions supported on
X. We have KL[P||Q] > 0.

Hence, when KL [p(y|f)llp(y|f*)] = 0, we have

p(ylf*) = p(ylf) almost everywhere (follows from Eq.

(3)), which implies [ p(y)log p}féﬂ{f))dy = 0 and hence

I(y; f) — 1(y; f*) < 0. We also have I(y; f) — I(y; f*) <
0, therefore KL [p(y|f)llp(y[f*)] = 0 = I(y;f) —
I(y; f*) =0. O

4. Summary of clinical variables in ITAC

The overview of the missing data in the clinical variables
in ITAC is given in Table 1. We simply fill the missing value
by the mean value calculated from the overall datasets.
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