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1. Preliminary Definitions
Given continuous random variables X,Y, Z, supported on
X ,Y,Z with probability distributions pX , pY , pZ :

(i) The definition of mutual information of X and Y and its
relation to information entropy:

I(X;Y ) ≡ E
[
log

pX,Y (X,Y )

pX(X)pY (Y )

]
=

∫
X ,Y

pX,Y (x, y) log
pX,Y (x, y)

pX(x)pY (y)
dxdy

= E[log pX,Y (X,Y )]− E[pX(X)]− E[pY (Y )]

= −H(X,Y ) +H(X) +H(Y )

= H(Y )−H(Y |X)

= H(X)−H(X|Y )

(1)

where

H(X) ≡ E[− log pX(X)] = −
∫
X
pX(x) log pX(x)dx

H(X,Y ) ≡ E[− log pX,Y (X,Y )]

= −
∫
X ,Y

pX,Y (x, y) log pX,Y (x, y)dxdy

H(Y |X) ≡ E[− log pY |X(Y |X)]

= −
∫
X ,Y

pX,Y (x, y) log pY |X(y|x)dxdy

(ii) The conditional mutual information of X and Y given
Z is defined as:

I(X;Y |Z) ≡ E
[
log

pX,Y |Z(x, y|z)
pX|Z(x|z)pY |Z(y|z)

]
=

∫
X ,Y,Z

pX,Y |Z(x, y|z)pZ(z)

log
pX,Y |Z(x, y|z)

pX|Z(x|z)pY |Z(y|z)
dxdydz

(2)

2. Proof of I(f ; f ∗) = I(f ; f ∗|y) + I(y; f ∗)

Proof. We have I(f∗; y) = H(f∗) − H(f∗|y) by Eq.(1).
Furthermore, since f∗ is obtained (deterministically) from
f , we have pf,f∗(f, f∗) = pf (f). Therefore, I(f ; f∗) =

E [− log pf∗(f∗)] = E
[
log

pf,f∗ (f,f∗)

pf∗ (f∗)pf (f)

]
= H(f∗) and

similarly, I(f ; f∗|y) = H(f∗|y). Combining these, we
have the desired result.

3. Proof of Proposition

KL [p(y|f)∥p(y|f∗)] = 0 =⇒ I(y; f)− I (y; f∗) = 0

Proof.

I(y; f)− I(y; f∗) =

−
∫

p (f∗) p (y|f∗) log p(y|f∗)df∗dy

+

∫
p(f)p(y|f) log p(y|f)dfdy

= −
∫

p (f∗) p (y|f∗) log

[
p (y|f∗)

p(y|f)
p(y|f)

]
df∗dy

+

∫
p(f)p(y|f) log

[
p(y|f)
p (y|f∗)

p (y|f∗)

]
dfdy

= −
∫

p (f∗)KL [p(y|f∗)∥p (y|f)] df∗

−
∫

p (f∗) p (y|f∗) log p(y|f)df∗dy

+

∫
p(f)KL[p(y|f)∥p(y|f∗)]df

+

∫
p (f) p (y|f) log p (y|f∗) dfdy

= Ef [KL[p(y|f)∥p(y|f∗)]]− Ef∗ [KL[p(y|f∗)∥p(y|f)]]

+

∫
p(y) log

p(y|f∗)

p (y|f)
dy

≤ Ef [KL[p(y|f)∥p(y|f∗)]] +

∫
p(y) log

p(y|f∗)

p (y|f)
dy.

Using Jensen’s inequality and the fact that − log is
strictly convex, we can show that the KL-divergence is al-
ways non-negative and the equality only holds when the dis-
tributions are equal almost-everywhere, which is proven as
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Table 1. Clinical variables in ITAC and percentage of missing data

# 1 2 3 4 5 6 7 8 9
Variable Age Oxygen saturation Platelets Measured saturation oxygen Respiratory rate PO2 D-Dimer Cough Dyspnea
Missing (%) 0 7.60 4.42 35.69 42.76 31.45 44.52 N/A N/A
# 10 11 12 13 14 15 16 17 18
Variable Diabetes Neurological disease Other CV disease Admitted to ICU Glucose Urea eGFR GOT PCR
Missing (%) N/A N/A N/A N/A 15.72 7.24 7.77 24.56 16.43

below:

KL[P∥Q] = E
[
− log

Q

P

]
≥ − logE

[
Q

P

]
(by Jensen’s inequality)

= − log

∫
X

Q(x)

P (x)
P (x)dx = 0

(3)
where P and Q are two arbitrary distributions supported on
X . We have KL[P∥Q] ≥ 0.

Hence, when KL [p(y|f)∥p(y|f∗)] = 0, we have
p (y|f∗) = p (y|f) almost everywhere (follows from Eq.
(3)), which implies

∫
p(y) log p(y|f∗)

p(y|f) dy = 0 and hence
I(y; f)− I(y; f∗) ≤ 0. We also have I(y; f)− I(y; f∗) ≤
0, therefore KL [p(y|f)∥p(y|f∗)] = 0 =⇒ I(y; f) −
I (y; f∗) = 0.

4. Summary of clinical variables in ITAC
The overview of the missing data in the clinical variables

in ITAC is given in Table 1. We simply fill the missing value
by the mean value calculated from the overall datasets.
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