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Supplementary Material

1. More Implementations Details
1.1. Matching details

The proposed multiscale flow-guided deformable cross-
attention block effectively processes frame embeddings Ei,
utilizing movement information from flow embeddings Ef .
This information is incorporated into the original frame em-
beddings Ei and normalized to form queries and keys.
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Flow-based and semantic-based offsets are computed
and combined to form sampling offsets that cater to extract-
ing keys and values from different scales. Afterwards, the
correlation between keys and queries is computed. The out-
put features pyramid consists of the weighted sum of joined
mask and image embeddings from the previous frame.

1.2. Training details

For pre-training, we use an initial learning rate of 4e-4
and a weight decay of 0.03 for 100000 steps, similarly to
[1]. Our main training is divided into two phases, first uti-
lizes ground truth mask as previous frame prediction, and
the other propagates predicted mask through sampled se-
quence. On the first phase, the model is trained for 50K
optimization steps, while the second phase takes 100K opti-
mization steps. Initial learning rate for main training equals
2e-4 and the weight decay is 0.05. Mask and flow encoders
are frozen before second phase. For the whole training,
length of our sampled sequence is 5.

During our main training, we use curriculum sampling
strategy similarly to [2]. We employ a combination of
DAVIS 2017 [3] train and Youtube-VOS [4], [5] train
datasets in 5:1 proportion. Additionally, we study adopt-
ing MOSE 2023 [6] as additional training data, with mix-
ture of DAVIS, Youtube-VOS and MOSE with proportion
5 : k : p where k + p = 1. Initial fraction of Youtube-
VOS kstart = 0.75 linearly decays to a final value of
kend = 0.15. To additionally prevent overfitting and in-
crease average number of objects present on the scene, for

the DAVIS and Youtube-VOS dynamic merge augmenta-
tion with probability of 0.4 is applied. Considering com-
plexity of the MOSE dataset even without dynamic merge
augmentation, we employ importance sampling augmenta-
tion specifically for this dataset. Further details regarding
this will be elaborated in Section 2.

We adopt AdamW optimizer [7] with a one-cycle learn-
ing rate schedule. Initial learning rate for both stages de-
clines in polynomial manner with 0.9 decay factor to a final
value of 1e-5. We also use learning rate warm-up for 5000
iterations. To address overfitting of our encoders, we set the
learning rate for them to 0.1 of a total learning rate. Follow-
ing [8], we use bootstrapped cross-entropy and dice losses
with equal weighting. For both stages, we use a batch size
of 16. DeVOS-L model training is distributed across four
Tesla A100 GPUs, while for DeVOS-B we use four RTX
3090 GPUs. The entire training process takes around 80
hours for the large model and 60 hours for the basic one.

2. MOSE 2023
2.1. Training

Classical VOS datasets [3]–[5] lack sequences with a
large number of objects present. To address this issue, a
dynamic merge augmentation is introduced, which involves
merging two videos with a certain probability, denoted as
p. However, due to the high complexity of scenes in the
MOSE dataset, the utilization of the same augmentation
technique is deemed suboptimal as it would make the scenes
too challenging for the model to effectively learn meaning-
ful information. In order to maximize the benefits of in-
corporating the MOSE dataset as additional training data
for the VOS task, a novel augmentation technique called
importance sampling is proposed. This technique involves

Table 1. The results of training with MOSE 2023. IS - Importance
Sampling.

MOSE IS D17V Y19

✗ ✗ 86.1 85.2
✓ ✗ 86.0 85.2
✓ ✓ 86.4 85.4
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Figure 1. Attention maps (1/16, 1/32) for long-term memory matching branch.

assigning a probability of sampling, denoted as pi, to each
sequence i from the dataset, which consists of n sequences.
The probability pi is determined using the following for-
mula:

pi =
oTi∑n
j=1 o

T
j

where oi represents the number of objects in the i-th se-
quence, and T is a temperature parameter that controls the
sharpness of the probability distribution. For our training,
we use T = 1. The adoption of importance sampling pro-
vides a boost in performance, which can be observed in the
Tab. 1.

2.2. Quantitative comparison with other methods
on MOSE 2023

The quantitative comparison on MOSE 2023 validation
is presented in Tab. 2.

3. Illustration of Multi-Scale Attention

We argue that multi-scale matching allows our approach
to benefit both from lower scale features that capture more
semantic information and higher-scale features that contain
richer spatial and fine-grained details. To support our claim,
we visualize attention maps from the long-term matching
branch for a given query on different scales. As we see in
Fig. 1, low scale attention maps exhibit high certainty re-
garding particular semantic areas, allowing to conduct bet-
ter matching for semantic categories, while attention maps

on higher scale pay more attention to edges. All of this re-
sults in effective and accurate matching of objects even on
complex sequences where occlusion is present.

4. Additional qualitative comparisons
4.1. DAVIS 2017 Test set

We conduct additional qualitative comparisons with re-
cent relevant VOS methods on DAVIS 2017 test set as it
features more challenging sequences. The results show that
our method gives superior results under rapid movement,
scale, and appearance changes. This is the most prominent
for the ”giant-slalom” sequence, where XMem fails com-
pletely, likely because the working memory fails to model
objects with large motion blur. On the contrary, our ap-
proach succeeds in such cases due to advanced short-term
matching capabilities. Moreover, we argue that thanks to

Table 2. The quantitative evaluation on MOSE 2023.

Methods J F J&F

AOT 53.1 61.3 57.2
STCN 46.6 55.0 50.8
RDE 44.6 52.9 48.8
SWEM 46.8 54.9 50.9
XMem 53.3 62.0 57.6
DeAOT 55.1 63.8 59.4

DeVOS-B 54.2 62.4 58.3
DeVOS-L 58.3 67.1 62.7



the proposed multi-scale matching, we successfully match
objects on different scales. Thanks to large-scale pretrain-
ing of the image backbone we utilize, we are able to get
better performance on the sequences with challenging illu-
mination - ”tractor”, ”people-sunset”, ”deer”. The general
notion of what objects are helps with sequences with chal-
lenging occlusions as well (”salsa”).

4.2. YouTube VOS

In order to demonstrate the robustness of our method,
we also provide its predictions on challenging sequences
from the YouTube VOS dataset. We carefully examine the
qualitative results within three primary categories of com-
plex scenes: fast motion (such as surfer and bike), occlu-
sions (illustrated by the deer example), and scenarios with
poor image quality, including strong blurring (depicted by
the spider) and unfavorable lighting conditions (as observed
in the night car scene).

5. Future work & Ethical considerations
As mentioned previously, our approach is independent

and complementary to the methods proposed by XMem,
ISVOS, and DeAOT. Therefore, it is logical to further en-
hance our approach by incorporating a more intelligent
memory scheme, integrating instance understanding from a
separate instance-segmentation branch, and decoupling im-
age features accordingly. To improve the quality of sim-
ilarity search regions for specific queries, it is also worth
exploring the implementation of kernelized memory reads,
following [9].

Video object segmentation plays a crucial role in various
applications, such as video editing and augmented reality.
At the same time, it is essential to consider the potential
misuse of this technology, including unauthorized surveil-
lance or malicious alternation of videos. The presence of
bias in VOS can lead to unfair outcomes and perpetuate
societal inequalities. Taking all of this into consideration,
the models trained with our approach on real-world datasets
should undergo ethical review to ensure that it is usable and
beneficial for everyone and is not used for the application,
including but not limited to illegal surveillance.
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Figure 2. Qualitative comparison between DeVOS and some state-of-the-art VOS methods on DAVIS 2017 Test set. Best viewed in zoom.
We don’t include ISVOS [10] since there is no source code available. For all methods we used DAVIS2017 test-dev sequences in 480p.



Figure 3. Qualitative results on the validation split of YouTube-VOS 2019.
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