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1. Implementation Details
Figure 1 shows the detailed processing pipeline of our

proposed network. Here the pillar feature aggregation and
the subsequent down sampling by the encoder are shared
for both input clouds to generate a common coarse feature
representation. The pillar generation module (Pillar Gen)
stacks the per voxel features produced by the feature en-
coder (Feat Enc) in height, to generate the pillar shaped
features for the BEV representation. Two self- and cross-
attention layers are deployed to compute coarse cell feature
correspondences Sc serving as an initial pre-filtering to re-
duce the overall computational effort. The shared decoder
produces fine cell features per cloud which are filtered cor-
responding to the coarse pre-selection and finally matched
via a single cross-attention layer to generate the fine corre-
spondence scores Sf . The nk most prominent matches are
utilized to calculate the respective pillar centroids, used as
input of an pose estimator predicting the final transforma-
tion.

1.1. Pillar Feature Aggregation

For our voxel grid generation, we used a grid size of
H = 352, W = 352, D = 32 in the course of our experi-
ments while cropping the input clouds at −50m to 50m for
x and y direction and −4m to 2m for z. While a smaller
grid size will result in a faster runtime, larger grids will
yield finer pillar centroid points guaranteeing more accu-
rate poses. We chose the mentioned size as a decent trade-
off between the two criteria and its essential divisibility by
2nl . Moreover, we selected a maximum of nz = 20 points
per voxel, with nv numbers of voxels per cloud, enabling a
fixed structure data processing. Therefore the input dimen-
sions for the Pillar- and Positional Encoder are 80 and 3,
respectively, with an output feature dimension of C = 16
per voxel.

1.2. Encoder-Decoder Network

As stated in the main paper, we used a layer size of nl =
4 with feature output dimensions of [256, 512, 1024, 1024]

for the encoder and [512, 256, 128, 128] for the decoder, re-
spectively. At the down scaled stage we filter nc = 30
coarse cell correspondences which will result in ncxnf with
nf = 256 fine cell matching candidates per cloud.

1.3. Pose Estimation Backends

Regarding pose estimation using RANSAC, we applied
the implementation featured in the Python library Open3D
using registration ransac based on feature matching
for the feature-based methods and registra-
tion ransac based on correspondence for the corre-
spondence estimation methods with 50000 iterations for
both convergence criteria and identical parametrization for
all methods. Furthermore, we use a distance threshold of
0.3 and the number of RANSAC correspondences of 4.

For pose estimation via weighted SVD, the matches
and their respective confidences predicted by the
correspondence-based methods are directly passed to
the method as input clouds and weights. For the feature
estimation methods, the output feature vectors are first
multiplied to generate a similarity matrix to obtain the
desired point correspondences. Subsequently, the score
matrix is filtered via mutual selection, solely leaving
matches with row and column-wise maxima.

1.4. Training

If not stated otherwise, we trained each version of our
network for 100 epochs applying ADAM optimization with
an initial learning rate of 0.0001 and a balancing factor
of λ = 4.0 for L = Lc + λLf . We used augmen-
tation to the training data applying random shuffle, scale
∈ {0.8, . . . , 1.2}, translation ∈ {0, . . . , 1.0}, rotation ∈
{−180◦, . . . , 180◦} and random noise to the points with a
factor of 0.01.

2. Metrics
2.1. Relative Translational and Rotational Error

For the estimated and ground truth transformations TE

and TGT the respective translation vectors and rotation ma-
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Figure 1. Detailed visualization of our MagneticPillars architecture with a shared 1) pillar feature aggregation and 2) down sampling, 3)
coarse cell correspondence pre filtering, 4) fine feature generation by a shared decoder and 5) final fine cell selection based on the coarse
initialization with subsequent 6) pose estimation on the most prominent matches.

trices are given as tE , tGT ∈ R3 and RE , RGT ∈ SO(3).
The RTE and RRE values are determined by:

RTE = ||tE − tGT ||

RRE = arccos

(
trace(RT

ERGT )− 1

2

) (1)

2.2. Registration Recall

The Registration Recall (RR) measures the fraction of
valid RTE and RRE values below the respective thresholds
0.6m and 5◦ to the total amount of frames M in the dataset.

RR =
1

M

M∑
i

1(RTEi < 0.6m) ∧ 1(RREi < 5◦) (2)

where 1 denotes the indicator function.

2.3. Inlier Ratio

This value is determined by applying the ground truth
transformation TGT onto the extracted key points and mea-
suring the distance between the putative point matches.
Here correspondences with a value lower than a certain

threshold τir = 0.3m are considered inliers. Finally, the
inlier ratio can be defined as the fraction of valid matches
with respect to the total amount of predicted key points nk

according to:

IR =
1

nk
·

nk∑
i=1

1(||(TGT · π̃L
i )− π̃K

i || < τir) (3)

3. Additional Results
3.1. Comparison to Direct Methods

As mentioned in Section 2 of our main paper, direct
point cloud registration methods aim to directly estimate the
pose based on the raw input scans in an end-to-end manner.
Therefore due to not explicitly deploying certain estima-
tion backends and a fixed number of extracted key points
or features, which was the main focus of our experiment
section, we did not include any comparisons to those kinds
of methods. However, we still want to contextualize the per-
formance of MagneticPillars with respect to direct methods
and performed experiments on the KITTI test dataset fea-
turing recent state-of-the-art methods Deep Global Regis-



tration (DGR) [3], HRegNet [7], and PCAM [2]. We de-
ployed our best-performing model parametrization for per-
formance validation, extracting 5000 key points and apply-
ing LGR for pose estimation. The respective results are
listed in Table 1.

Table 1. Registration performance of MagneticPillars compared to
direct methods on the KITTI test dataset.

Method nk Estimator
RR ↑ RTE ↓ RRE ↓ Time ↓
(%) (cm) (◦) (s)

DGR [3] All Direct 96.2 21.3 0.348 0.959
HRegNet [7] All Direct 95.7 5.3 0.992 0.101
PCAM [2] All Direct 97.1 7.8 0.417 0.137
Ours 5000 LGR 99.5 5.4 0.297 0.117

Note that we used the KITTI test set with the default data
aggregation mentioned in Section 4.1, including the valida-
tion thresholds of 0.6m and 5◦ for RTE and RRE, respec-
tively.

We are able to outperform all methods concerning RR
with a value of 99.5%, where PCAM ranks second with
97.1% and RRE of 0.297◦, where DGR gains second low-
est with 0.348◦. We furthermore reach the second lowest
RTE (5.4cm) and runtime (0.117s), solely being surpassed
by HRegNet, which, however, features a much lower RR
impeding the comparison of RTE and RRE values. All in
all, again MagneticPillars is able to reach state-of-the-art
results when compared to recent point cloud registration ap-
proaches featuring a considerable trade-off between compu-
tational effort and pose estimation accuracy.

3.2. RANSAC Results for Varying Number of Key
points

Analogous to our experiments in Section 4.2.1, we also
conducted an evaluation of the registration performance un-
der a varying number of key points using RANSAC as the
pose estimation backend. Here we also included a compar-
ison of the overall runtime of the specific methods since a
different number of key points will highly impact the pro-
cessing time of RANSAC. The corresponding results are
listed in Table 2.

Here we are reaching the highest RR score for all key-
point selections, with a higher number generally benefiting
the baseline methods, where RANSAC is able to counteract
the impact of outlier predictions. In terms of RTE we are
able to rank best in 8 out of 9 categories and second best for
the remaining one. Geotransformer is generally showing
the best accuracy in terms of RRE, with us reaching second
lowest for 5 out of 9 selections and lowest for 10 extracted
points. Regarding runtime evaluation, we are solely out-
performed by FCGF, which however features a much worse

Table 2. Registration performance of the considered methods on
the KITTI test dataset with varying number of extracted key points
using RANSAC for pose estimation.

# Key points nk 10 25 50 100 250 500 1000 2500 5000
Registration Recall ↑ (%)

FCGF [4] 0.4 0.9 6.3 19.8 60.7 82.2 91.2 93.5 93.0
D3Feat [1] 6.7 20.4 52.3 90.5 99.1 99.5 99.5 99.5 99.5
Predator [5] 0.7 3.6 16.8 51.2 93.0 98.7 99.3 99.5 99.5
CoFiNet [9] 66.1 90.5 96.8 98.6 99.5 99.5 99.5 99.5 99.5
RegTr [6] 63.8 76.9 80.4 82.9 85.2 85.6 85.6 86.1 86.5
GeoTransformer [8] 93.7 98.9 99.5 99.5 99.5 99.5 99.5 99.5 99.5
Ours 96.4 99.1 99.5 99.5 99.5 99.5 99.5 99.5 99.5

Relative Translational Error ↓ (cm)
FCGF [4] 33.5 39.4 40.7 38.0 31.6 23.6 18.7 15.6 15.0
D3Feat [1] 28.2 23.0 21.4 16.4 10.8 8.6 7.3 6.4 6.9
Predator [5] 47.4 34.9 36.7 31.9 21.7 13.5 9.7 6.7 6.0
CoFiNet [9] 23.4 18.9 15.4 12.1 9.9 9.0 8.2 7.8 7.8
RegTr [6] 33.8 29.1 27.1 24.7 23.6 22.9 22.7 22.8 22.8
GeoTransformer [8] 18.2 12.6 10.7 9.5 8.8 8.2 7.8 7.5 7.3
Ours 14.8 10.9 9.2 8.1 7.0 6.4 6.1 6.0 6.4

Relative Rotational Error ↓ (◦)
FCGF [4] 1.642 2.962 2.491 2.405 1.832 1.140 0.685 0.456 0.389
D3Feat [1] 1.698 1.736 1.367 0.896 0.523 0.406 0.342 0.306 0.313
Predator [5] 1.640 2.854 2.681 2.198 1.248 0.664 0.435 0.326 0.275
CoFiNet [9] 1.453 1.031 0.803 0.605 0.476 0.429 0.351 0.360 0.360
RegTr [6] 1.342 0.855 0.682 0.574 0.496 0.445 0.424 0.408 0.419
GeoTransformer [8] 1.057 0.599 0.461 0.387 0.333 0.299 0.289 0.286 0.289
Ours 1.003 0.727 0.562 0.476 0.417 0.355 0.345 0.319 0.299

Total Runtime ↓ (s)
FCGF [4] 0.116 0.113 0.111 0.115 0.113 0.113 0.118 0.122 0.132
D3Feat [1] 0.225 0.232 0.228 0.228 0.226 0.238 0.236 0.241 0.264
Predator [5] 0.194 0.194 0.195 0.195 0.197 0.196 0.200 0.221 0.273
CoFiNet [9] 0.390 0.390 0.390 0.390 0.391 0.392 0.393 0.398 0.402
RegTr [6] 0.488 0.488 0.489 0.490 0.491 0.493 0.496 0.502 0.503
GeoTransformer [8] 0.264 0.264 0.265 0.266 0.267 0.271 0.275 0.282 0.287
Ours 0.128 0.129 0.130 0.133 0.139 0.151 0.164 0.187 0.194

estimation accuracy.
Overall, RANSAC benefits from a higher number of key

points resulting in a more accurate pose prediction, which
however will lead to a tremendous increase in computation
time. This again shows the general benefit of applying SVD
as a registration backend which features a constant low run-
time unaffected by varying input points but relies on an ac-
curate correspondence initialization.

3.3. Inlier Ratio Comparison

A convenient indicator for the correspondence predic-
tion capability is the Inlier Ratio (IR) already featured in
the qualitative visualizations of our main paper. The IR val-
ues for selected methods and varying nk are listed in Table
3. We are reaching the highest values for all key point selec-
tions compared to the other methods by a large margin with
a maximum of 76.1% for 25 extracted points and more than
double the value compared to the second-ranked approach
for 5000 correspondences.

The robustness of our keypoint detection is moreover
displayed in Figure 2 where we visualized the extracted
points with varying nk for 4 selected frames of the KITTI
test dataset. Due to our fixed grid representation with



Table 3. Inlier Ratio of the considered methods on the KITTI test
dataset with varying number of extracted key points for an inlier
threshold of τir = 0.3m.

# Key points nk 10 25 50 100 250 500 1000 2500 5000
Inlier Ratio ↑ (%)

Predator [5] 0.3 0.6 1.3 2.4 5.2 8.6 13.1 19.7 23.2
CoFiNet [9] 14.9 14.5 14.4 14.5 14.4 14.5 14.4 13.9 13.3
RegTr [6] 36.2 36.0 35.5 35.1 33.7 32.7 30.4 25.0 24.4
GeoTransformer [8] 46.1 45.5 44.0 42.6 40.3 37.8 34.4 28.4 22.5
Ours 75.7 76.1 75.5 74.2 71.1 67.6 60.9 51.0 50.7

the proposed coarse to fine cell filtering, we are able to
extract the relevant overlapping information between two
input clouds. As shown in the All Fine column, the
full fine feature candidates based on the coarse cell up-
sampling already represent an appropriate match candidate
pre-filtering, extracting related structures from the two in-
put clouds. Based on the fine score matrix Sf resulting from
the final cross-attention module, we are able to extract the
nk most confident match predictions visualized in the sub-
sequent columns for nk ∈ {10, 250, 1000}. In this context,
our keypoint selection is able to maintain a shared struc-
tural consistency of the input clouds even with increasing
sparsity of the matching candidates.

3.4. Qualitative Results

Finally, we want to demonstrate the pose estimation ca-
pability of MagneticPillars on a visual level by including
additional qualitative results on the KITTI and Nuscenes
datasets shown in Figure 3 and 4 respectively. Here we are
able to perform an accurate point cloud registration even for
the sparser clouds captured within the Nuscenes dataset, re-
sulting in an estimated pose close to the ground truth trans-
formation.
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Figure 2. Visualization of the extracted key points for 4 selected frames of the KITTI dataset. Here the first column shows the two input
clouds PK and PL, the second all fine feature points πK and πL extracted from the coarse correspondence cells (nc = 30) and the
subsequent entries the respective top 1000, 250 and 10 fine feature matches based on the predicted score matrix Sf . For a varying number
of selected key points MagneticPillars is able to constantly extract common structural characteristics in between the two input clouds.



Figure 3. Qualitative registration results on the KITTI dataset for 3 selected frames featuring input clouds PK and PL with applied
estimated TE and ground truth transformation TGT .



Figure 4. Qualitative registration results on the Nuscenes dataset for 3 selected frames featuring input clouds PK and PL with applied
estimated TE and ground truth transformation TGT .


