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1. Exposure gaps

Long exposure times are more desirable than high fram-
erates for the DAVIS 346C. This is because as one shortens
exposure times to obtain higher framerates, the “gap time”
in between exposures remains rather constant, as can be ob-
served in Tab. 1 and Fig. 2. The mapping from exposure
times to framerates is thus not at all linear (see Fig. 1) and
the “exposure coverage”, i.e. the percentage of the sequence
time during which the shutter is actually open decreases as
exposure time is reduced (see Fig. 3). This means that the
shorter one makes exposures (e.g. to reduce motion blur),
the less information about the course of the sequence can
actually be represented by the frames. As a simple example,
consider a laser pointer moving nonlinearly on a wall: A
long exposure frame representing this motion will be blurry,
but it will inform the viewer about the exact trace of the
laser point. Two short exposure frames with a consider-
able exposure gap between them will only give 2 positions
of the points and not inform the viewer about the path the
point was following between those positions. It is for this
reason that we chose to configure the camera with long ex-
posures, as this gives us the maximum of information about
the scene.

2. Frame dimensions and color

Our method is not specific to any particular model of
event camera, but in our experiments we used the DAVIS
346C. Its pixel matrix, resolution 346 × 260, is equipped
with a Bayer filter, which means that each pixel records
brightness in only one of three wavelength ranges, see
Fig. 4. In our implementation we account for the Bayer fil-
ter by treating each 2×2 square of the pixel matrix as 1 pixel
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Figure 1. A visualization of the “FPS” column of Tab. 1, mapping
exposure times to the framerates that the DAVIS 346C delivers.
Even for the shortest exposure times, we cannot reach more than
60FPS.
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Figure 2. A visualization of the “Gap per frame” column of Tab. 1,
mapping exposure times to exposure “gaps”. As exposures be-
come shorter and shorter, gap times stay at around 18ms. This
is the reason why shortening exposure time cannot indefinitely in-
crease framerate for the DAVIS 346C.
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Exposure FPS Gap per frame Coverage
900000µs 1.1Hz 9090µs 99.00%
800000µs 1.2Hz 33333µs 96.00%
700000µs 1.4Hz 14285µs 98.00%
600000µs 1.6Hz 25000µs 96.00%
500000µs 1.9Hz 26315µs 95.00%
400000µs 2.4Hz 16666µs 96.00%
300000µs 3.15Hz 17460µs 94.50%
200000µs 4.6Hz 17391µs 92.00%
100000µs 8.45Hz 18343µs 84.50%
90000µs 9.25Hz 18108µs 83.25%
80000µs 10.2Hz 18039µs 81.60%
70000µs 11.3Hz 18495µs 79.10%
60000µs 12.8Hz 18125µs 76.80%
50000µs 14.7Hz 18027µs 73.50%
40000µs 17.15Hz 18309µs 68.60%
30000µs 20.5Hz 18780µs 61.50%
20000µs 26.0Hz 18461µs 52.00%
10000µs 35.0Hz 18571µs 35.00%
9000µs 36.5Hz 18397µs 32.85%
8000µs 38.1Hz 18246µs 30.48%
7000µs 39.0Hz 18641µs 27.30%
6000µs 41.0Hz 18390µs 24.60%
5000µs 43.0Hz 18255µs 21.50%
4000µs 46.8Hz 17367µs 18.72%
3000µs 47.0Hz 18276µs 14.10%
2000µs 49.0Hz 18408µs 9.80%
1000µs 51.6Hz 18379µs 5.16%
500µs 53.0Hz 18367µs 2.65%
100µs 54.0Hz 18418µs 0.54%
10µs 54.0Hz 18508µs 0.05%

Table 1. We configured the DAVIS 346C with multiple different
exposure times and then measured the resulting framerates that
the camera was able to deliver. From these measurements we
can compute how much “gap” time goes by between exposures.
We also computed exposure “coverage”, i.e. the percentage of se-
quence time during which the shutter is actually open.

of depth 4 (red, green, green, blue). The brightness frames
therefore have the dimensions w×h× d = 173× 130× 4 .
All the results we show in this work have been demosaiced
in order to obtain RGB images.

3. Computation of control point gradients
In Sec 3.2 of the main paper, we stated:

Given b̄, chaining Eq. (2) in the form pj+1 ·
(b̃∗(tj+1) − b̃∗(tj)) = cj admits only one pos-
sible valuation for those gk that are event-based ,
if one assumes that brightness is constant between
events.

We now give a detailed description of how to compute this
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Figure 3. A visualization of the “Coverage” column of Tab. 1,
mapping exposure times to the percentage of sequence time during
which the shutter is open. Shorter exposure times, while somewhat
increasing framerate (see Fig. 1), lead to less coverage and therefor
less information being captured.

valuation, which basically means that we compute the exact
geometric shape of the orange-hatched area in Fig. (2) of
the main paper:

Assuming that for a given pixel the camera reported ex-
actly n− 2 events of the form (tj , pj), with j ∈ {1, ..., n−
2}, we add the artificial events (T0,Ω0), (T1,Ω1) (where
Ω0,Ω1 denote undefined polarities), such that there are n
events in total. The artificial events are added only to sim-
plify the mathematical formulation and their undefined po-
larities will never need to be used in any actual calculation.

By chained application of the aforementioned equation
to the effective thresholds cj , for all events from the first
one (artificial, at time T0) up to event j, we can compute
the factor fj+ with which an initial brightness value must
be multiplied in order to obtain the correct brightness value
after event j:

fj
+ := exp

(
j∑

l=1

pl · cl

)
(1)

Likewise, we can compute the factorfj−, by which a fi-
nal brightness value must be multiplied in order to obtain
the correct brightness value after event j:

fj
− := exp

n−2∑
l=j

−pl · cl

 (2)

Note that, because of the definition of
∑

, Eqs. (1)
and (2) entail f0+ = 1 = f−

n−1, although p0 and pn−1

are undefined.
Based on our average brightness parameter b̄ we can now

define brightness values (i.e., gradients) that M should have
between events j and j + 1:
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Figure 4. The DAVIS 346C records brightness in three wavelength ranges: red, green and blue. However, because of the Bayer filter in
the camera, each pixel sees only one of these ranges, with 25% of the pixels seeing red, 25% of the pixels seeing blue and 50% of pixels
seeing green, leading to a 2× 2× 1 “Bayer mosaic”. We implemented this Bayer filtering for our synthetic data as well. For any footage,
synthetic or real, our preprocessing for all methods, ours and previous, turns the Bayer mosaic into a 1×1×4 pattern, which we undo once
we obtained the output from each method. This preprocessing is necessary to make sure that all the pixels in a channel belong to the same
wavelength range, as otherwise a red apple for example would lead to a distinct spatial grid pattern in the mosaic, that would throw off
convolutional neural networks. Demosaicing is the process of interpolating missing RGB-values from the surrounding pixels, which is a
standard operation in frameworks such as openCV and was used in previous works [3] as well. Demosaicing causes interpolation artefacts.

gj :=
1

2

b̄ ·∆T∑n−2
l=0 fl

+ ·∆tl
· fj+ +

1

2

b̄ ·∆T∑n−2
l=0 fl

− ·∆tl
· fj−

(3)
where ∆tj := tj+1 − tj and ∆T := T1 −T0. These are the
exact values of b∗ at the red and blue points of Fig. (2) in
the main paper, which completely determines the shape of
the orange-hatched region and makes its size exactly ∆T · b̄.

The two summands in Eq. (3) do not differ from one an-
other, the equation could be simplified. However, we found
that computing the gj only based on one direction (i.e. ei-
ther based only on Eq. (1) or only based on Eq. (2)) leads
to an asymmetric flow of gradients during gradient descent:
For example, if only fl

+ were used, gradients flowing into
gj could only back-propagate into cl with l ≤ j. Exper-
iments have shown that this leads to approximation errors
accumulating over the course of the sequence. Instead, we
want gradients flowing through gj to affect all cl.

Furthermore, Eqs. (1) to (3) are prone to numerical prob-
lems due to possible division by values near 0 and because
of exp values exceeding the datatype range. Our implemen-
tation thus computes the equations in a slightly different
way than we present them here, in order to avoid extreme
intermediate values and undefined gradients.

For each control point Pk that is event-based and thus
represents exactly one event j (where j = 0 represents the
first, artificial event at T0), we can now set gk := gj . As
defined in the main paper, the remaining, exposure-based gk
are defined by interpolation between the event-based ones.

4. Bézier construction
At the end of section 3.2 in the main paper we stated that

our method uses the control point parameters wright
k , wleft

k+1 to
define a Bézier curve between the control points Pk, Pk+1.

This definition is as follows:
By Eq. (5) in the main paper, we are required to

find a smooth curve between two given points,(tk, yk) and
(tk+1, yk+1), with the additional constraint of the derivative
of this curve with respect to the t-axis having specific val-
ues at times tk, tk+1. Our Bézier curve must therefor be at
least a cubic one, which means that we need two additional
helper points in-between (tk, yk) and (tk+1, yk+1). We thus
set dA := wright

k · (tk+1 − tk) and dB := wleft
k+1 · (tk+1 − tk)

and define the helper points

PA
k,k+1 := Pk +

(
dA
gkdA

)
PB
k,k+1 := Pk+1 −

(
dB

gk+1dB

) (4)

The cubic Bézier curve for the points
Pk, P

A
k,k+1, P

B
k,k+1Pk+1 completely determines M

between Pk and Pk+1. The control point parameters wright
k

and wleft
k+1 control how quickly the gradient of M transitions

from gk to gk+1.

5. Implementation details
DAVIS 346C settings. We used the DAVIS 346C pretty
much with the default parameters as set by the IDE from the
camera manufacturer1. We enabled FPGA filtering. Some
of our sequences were recorded with the background activ-
ity filter, while others were not. While the rates of events
differ noticeably depending on the usage of the DVS back-
ground activity filter, we did not notice any visual differ-
ences in our results.
Optimization. We implemented our method in PyTorch.
For optimization, we use the Adam optimizer [1] for 1000

1https://inivation.gitlab.io/dv/dv-docs/

https://inivation.gitlab.io/dv/dv-docs/


Reference exposure 0.1s Reference exposure 0.002s
Variant PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Linear interpolation 40.72dB 0.9866 0.0112 29.50dB 0.9006 0.0624
Parabolic interpolation 39.21dB 0.9795 0.0174 28.95dB 0.8889 0.0793

No confidences 43.96dB 0.9933 0.0047 30.25dB 0.9105 0.0647
No exposure-based CP 43.69dB 0.9929 0.0052 29.52dB 0.9007 0.0755

Without Lconfidence 45.80dB 0.9957 0.0032 27.70dB 0.8677 0.1153
Without Llinearity 42.61dB 0.9915 0.0096 20.92dB 0.6678 0.2613

Ours (full) 45.17dB 0.9949 0.0035 29.69dB 0.9039 0.0739

Table 2. An extended version of Tab. (3) in our main paper, with more decimal digits and additional columns for LPIPS scores.

iterations. To define the learning rate ri for iteration i we
first set αi := (1− i−100

900 )1.5 and then specify:

ri :=


10−2 : i = 0
i

100 · r0 : 0 < i < 100

(r0 − r999) · αi + r999 : 100 ≤ i < 999

10−3 : i = 999

(5)

The tensors representing our model parameters are usu-
ally in the range [-1; 1] (even though the range of the math-
ematical variable they represent may be a different one!),
but some of them, like the confidence weights for example,
have a far smaller range, which effectively increases their
learning rate. These details are best studied directly in our
source code, which we plan to release.
Initialization and invariants. Our model parameters are
initialized and bounded as follows:

1. We always initialize the thresholds as c+1 = c−1 =
0.15 and keep them in the interval [0.01; 1.8].

2. For each pixel, b̄ can easily be initialized to be the
average brightness level of this pixel over all input
brightness frames. We only bound b̄ to be positive,
because although the range of the brightness values in
the recorded frames is limited, there is physically no
maximal brightness value we could rely on.

3. The yk and δk are initialized such that the orange-
hatched area in Fig. (2) in the main paper satisfies
Lexposure reasonably well. To do so, we have to take
exposure gaps into account. The details of the initial-
ization are best studied in our source code. Since the
total amount of physical energy received by a pixel up
to some time t is monotonically increasing, the func-
tion M should be monotonically increasing as well,
requiring ∀k : yk ≤ yk+1. The δk are kept in the range
[−1; 1].

4. The confidence weights γj are initialized with 1 and
not bounded at all, because the sigmoid term in Eq. (6)

of the main paper properly bounds the confidences we
compute based on these weights. For the same reason,
ω+1, ω−1 (initialized to 1) and β+1, β−1 (initialized to
0) are left unbounded.

5. The gradient weights wleft
k , wright

k are initialized to 0.45
and restricted to the range [0.05; 0.45], to avoid numer-
ical issues that might arise in the computation of Bézier
interpolation.

Performance. We load all input data (frames and events)
into the GPU once and thus need no overhead for data load-
ing processes or data sampling. Every forward and back-
ward pass for optimization is touching all the weights of
our model and is supervised by the entirety of the input
data. Computational performance varies greatly with the
number of events and their distribution. Our recordings are
typically 5 - 15 seconds long. None of them requires more
than 48GB of GPU memory, most of them require less than
24GB. Some sequences are processed within tens of min-
utes, others might take 2 - 4 hours.

6. LPIPs scores for the quantitative ablation
In Tab. (3) of the main paper we gave PSNR and SSIM

scores for our ablation study on synthetic data. To save
space, we omitted the LPIPS scores for this experiment and
rounded the numbers to a shorter decimal representation.
Tab. 2 is an extended version of the table in the main paper,
for completeness.

7. TimeLens is out of scope
Comparing our method to TimeLens(++) [4,5] would be

unfair to TimeLens. This is because we are investigating the
setting of long exposure RGB frames, which contain a lot of
motion blur. However, TimeLens is designed for blur-free
input images, recorded with a short exposure time. In ad-
dition, TimeLens expects the input to contain RGB bright-
ness, but grayscale events. The DAVIS 346C cannot pro-
vide such input, because the events it records are inherently
colored and there is no way of computing grayscale events



from them, other than applying a method such as the one
presented in this work.

To demonstrate that TimeLens is not suitable for our set-
ting, we nevertheless applied it to some of our recordings
and synthetic data. We did so by treating each quadrant of
the Bayer mosaic (see Sec. 2 and Fig. 4) as its own sepa-
rate sequence, i.e. by turning, for each of the 4 quadrants,
the brightness pixels of this quadrant into one contiguous
grayscale image and using only the events for this quad-
rant. This is still unfair, because TimeLens was trained for
colored brightness frames and not for artificial grayscale
frames. Fig. 5 shows that TimeLens is unable to compensate
the motion blur present in the long exposure input. Quanti-
tative evaluation on our 10Hz synthetic data (see Table 1 in
our main manuscript) gave a PSNR score of only 22.51dB,
showing once more that TimeLens is the wrong tool for our
setting.

8. Limitations extended
The design choices of our method make it avoid many

of the limitations of existing methods. For example, since
we exploit the event semantics in a principled way, we do
not need any pre-training and thus no training data, from
which we could inherit a bias. As a second example, the fact
that we treat all pixels rather independently from each other
makes it easy for us to handle complex lighting interactions
(like transparency in glass and water) non-linear motion and
disocclusions, which are more challenging for methods that
use optical flow for example.

However, our design choices of course give rise to limi-
tations as well:

The importance of Lexposure makes it strictly necessary
that we have exact time stamps for the brightness frame ex-
posures, i.e. we must know the times at which the shut-
ter opens and closes. Some existing datasets, such as te
Color Event Camera Dataset [3] do not provide this infor-
mation. In addition, methods like TimeLens [4] typically
work on input frames that were recorded with minimal ex-
posure time, which, if used as input to our method, is likely
to give noisy results because short exposure times reduce
the impact of Lexposure, allowing noise in the event data to
become more visible in our output.

Furthermore, an important limitation of our method is its
generous usage of GPU RAM: Representing the entire se-
quence in memory requires significant GPU capacity. We
experimented with applying our method only to pairs of
consecutive brightness frames and stitching the results to-
gether. While we found this to lead to qualitatively compa-
rable results with less memory demand, it does take more
computation time, because frame pairs need to overlap (i.e.
every frame is treated twice) and because optimizing for one
frame pair simply does not fully use the parallelism offered
by the GPU. We chose to value computation time higher

than memory consumption and thus reported results from
global optimization only.

As future work we consider an investigation into how in
particular our confidence regularizer affects the ability of
our method to estimate the contrast thresholds used by the
event camera. Not many methods are able to do so (one ex-
ception being mEDI [2]), but knowledge about the thresh-
olds for a particular sequence is often a valuable piece of
information for further processing.
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Input RGB TimeLens output Our output

Figure 5. A comparison of our results with those of TimeLens [4, 5] , at output exposure time 0.002s. The top two rows show results on
recordings (see Figure 3 in the main manuscript), while the bottom two rows show results on our synthetic dataset. Since TimeLens was
neither designed nor trained for long exposure RGB brightness frames and colored events, it fails to resolve the motion blur present in the
input. We therefor argue that it would be unfair to include TimeLens in a comparison to our method.
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