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1. Implementation Details
1.1. Training

We implement our code based on the publicly-available
CLIP repository of OpenCLIP [6]1. In all the experiments
considered in the paper, we use a pretrained ViT-B/32 archi-
tecture, initialized using OpenCLIP’s weights2. In addition,
we consider a threat model of L2 with a maximum pertur-
bation of 1.5 and 5 PGD steps by extending the standard
implementation to the multimodal case. We set the learn-
ing rate and weight decay to 2e−5 and 1e−4, respectively,
and perform 10 gradient accumulation steps to enable larger
batch sizes, resulting in an effective batch size of 40, 960.
As for the training data, we concatenate SBU, CC-3M, and
CC-12M without resampling and a downsampled version
of LAION 400M (by ×0.04). We freeze the textual encoder
and finetune the vision encoder (88M parameters) on eight
A40 GPUs. We study the effects of different design choices
in Sec. 3. We will make our code and pretrained model
publicly available.

1.2. Text-to-Image Generative Frameworks

In the experiments presented in the main paper, we seam-
lessly replace the existing CLIP ViT-B/32 in such frame-
works with CLIPAG, using the same architecture and hy-
perparameters as in the baseline. In this way, we ensure a
fair comparison that enables us to study the benefits of CLI-
PAG. We explore our approach in three main frameworks
and describe implementation details and relevant informa-
tion below.

CLIPDraw We utilize the official implementation of
CLIPDraw3 and replace the used “vanilla” CLIP ViT-B/32
by CLIPAG with the same architecture. As stated in the

1https://github.com/mlfoundations/open_clip
2https://huggingface.co/laion/CLIP-ViT-B-32-

laion2B-s34B-b79K
3https : / / colab . research . google . com / github /

kvfrans/clipdraw/blob/main/clipdraw.ipynb

main paper, we experiment with two settings – with and
without augmentations. Besides the qualitative demonstra-
tions, we propose a quantitative evaluation procedure to
evaluate the performance. To this end, we utilize some
prompts suggested in CLIPDraw’s paper and request from
ChatGPT [3] to provide us additional 100 similar prompts.
We synthesize the generated prompts using CLIPDraw with
CLIP and CLIPAG, with and without augmentations. Next,
we calculate the aesthetic score using a CLIP trained on hu-
man aesthetic predictions using a publicly available code4.
Given an image, such a model outputs a continuous value
describing the aesthetic score (higher is better). Using this
model, we calculate an aesthetic score for every generated
drawing and report two metrics – Average aesthetics score
and a pairwise aesthetic preference. Since the proposed aes-
thetic metrics do not depend on the caption, we also mea-
sure caption similarity using CLIP similarity with two CLIP
models to validate the results better. Besides CLIP similar-
ity, we utilize the R-Prec metric [7], focusing on image-
based text retrieval. Specifically, given a generated image,
we use CLIP to pick the most probable prompt across all the
100 textual descriptions. We average the accuracy of such
a task for the generated drawings, resulting in the R-Prec
metric, similar to [7]. The combination of these metrics
captures both the generated drawings’ quality and consis-
tency with the caption, enabling a proper evaluation of the
generated drawings.

VQGAN+CLIP Similar to CLIPDraw, we use the official
code repository 5 and replace CLIP with CLIPAG. We ran-
domly sample 100 captions from the validation set of the
MS-COCO dataset and generate two sets of 100 images.
Next, we calculate the CLIP similarity to measure the align-
ment of the generated images with the desired prompts. To
better demonstrate the effects of replacing CLIP with CLI-

4https : / / github . com / christophschuhmann /
improved-aesthetic-predictor

5https://github.com/nerdyrodent/VQGAN-CLIP
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PAG, we provide additional results in Fig. 1.

CLIPStyler We experiment with CLIPStyler official
code6 and replace CLIP with CLIPAG, with and without
the style network. To better demonstrate the effectiveness
of CLIPAG in the text-guided style transfer context, we pro-
vide additional results in Fig. 2.

1.3. Generator-Free Text-to-Image Generation

Initialization mechanism In practice, we propose the
following simple-yet-effective initialization process – we
randomly sample image candidates from a simple distribu-
tion and pick the one that best matches the target text using
CLIP cosine similarity. Specifically, we leverage a down-
sampled version (16×16) of the Tiny-ImageNet dataset [12]
and train a Gaussian Mixture Model where each Gaussian
represents a class. Next, we sample M candidates from
each of the 200 classes, resulting in M × 200 images. Such
images are unrealistic and mainly contain colorful blobs (a
visualization of the chosen initial images is shown in Fig-
ure 3). Next, we upsample these images to 224 × 224 and
pick the one with the highest alignment with the target text
as the input to our process, resulting in a generated image.
To study the effect of the initialization mechanism, we gen-
erate several prompts using the above-described initializa-
tion, compared to random Gaussian noise one in Figure 4.
As can be seen, CLIPAG is capable of producing meaning-
ful results with both initializations, attesting to its guiding
capabilities.

The generation process After the initialization step, we
perform an iterative process of K steps (set empirically to
1000) in which we modify the input image to better align
with the given textual description. Specifically, we du-
plicate the image and augment every instance using ran-
dom augmentations, leading to a batch of different image
views. Next, we input the batch to the image encoder to
obtain feature representations. Finally, we calculate the co-
sine similarity loss, calculate the input gradients and use
them to update the image. Unlike other works that harness
CLIP [2, 5, 8, 10], we do not use additional losses such as
direction-loss and total variation regularization to guide the
process but rather focus solely on the basic CLIP-loss. Re-
peating these steps K times results in pleasing generated
images corresponding to the target captions.

2. Explainability
With the introduction of learning-based machines into

“real-world” applications, the interest in interpreting the de-
cisions of such models has become a central concern. Thus,
the explainability of deep learning-based models is a crucial

6https://github.com/cyclomon/CLIPstyler

objective for improving the trust and transparency of such
models. Moreover, it enables users to understand model
predictions better and detect shortcuts and biases. We hy-
pothesize that due to its more aligned gradients, CLIPAG
possesses improved explainability capabilities than the reg-
ular CLIP model. To verify if this is indeed the case, we
utilize The GradCAM [11] (Gradient-weighted Class Acti-
vation Mapping) algorithm, which utilizes the model’s gra-
dients to generate visual heatmaps, highlighting the impor-
tant regions in an input image for a given target. We follow
the implementation of [4]7. Specifically, GradCAM com-
bines the features and the gradients of a network’s layer by
multiplying it. As this method relies on the gradients of the
deepest layers, upsampling its results to the input resolu-
tion often leads to coarse results. In addition, GradCAM is
designed for convolutional neural networks and is signifi-
cantly less effective in vision transformers. In Figure 5, we
present the results of applying GradCAM on CLIP (using
ViT-B/32) with both the original and CLIPAG, using Ima-
geNet images in a zero-shot setting. As can be seen, while
GradCAM performs unsatisfactorily on the regular CLIP,
applying it on CLIPAG leads to more aligned heatmaps with
the target objects. We hypothesize that this improvement
stems from the Perceptually Aligned Gradients property of
CLIPAG, leading to an improved explainability with Grad-
CAM.

Furthermore, we study the interpretability of CLIPAG
under adversarial attacks. To this end, given an input image
x and a textual description of an object t (e.g., “a cat”),
we perform adversarial attacks to minimize the cosine sim-
ilarity between x and y in the feature space, and maximize
the one between the image and the negation of the textual
description t, denoted as t̃ (e.g., “not a cat”). Formally,
we solve the following optimization problem:

max
δ∈∆

LSIM (f I
θI (x+δ), fT

θT (t))−LSIM (f I
θI (x+δ), fT

θT (t̃))

(1)
where LSIM is the cosine similarity loss, i.e., maximiz-
ing it minimizes the cosine similarity. In particular, we
perform a Projected Gradient Descent (PGD) attack where
∆ = { δ : ∥δ∥∞ ≤ 8

255} using 20 steps and a step size of
1

255 . We provide visualizations of the outputs of GradCAM
using both CLIPAG and the “vanilla” CLIP on adversarial
attacks in Figure 5. As can be seen, the adversarial attacks
change the outputs of the baseline significantly; however,
CLIPG’s outputs are much more robust.

3. Ablation Study
In this section, we explore the effects of different design

choices of Vision-Language adversarial finetuning CLIP on
its Perceptually Aligned Gradients. To this end, we conduct

7https://github.com/anguyen8/gScoreCAM
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Figure 1. VQGAN+CLIP additional results.

a relatively short training and study the effect of different
architectures (ViT-B/32, ViT-B/16, and ConvNext). More-
over, we also compare an L∞ (ϵ = 2

255 ) to an L2-based one
(ϵ = 1.5). To assess the impact of such design choices, we
use them for generator-free text-to-image generation using
our proposed framework, described in ??, and visualize the
results in Fig. 6. As can be seen, all the different design
choices lead to satisfactory outputs, attesting to their PAG.
However, there are some differences:

• Different ViTs – We consider both ViT-B/16 and ViT-
B/16, which differ in the patch size, using L∞-based
threat model. The ViT-B/16, which utilizes a smaller
path size, leads to some visual artifacts. We hypothe-
size that maximizing the consistency with the caption
with a small patch architecture leads to fine-grained
modifications that result in undesired artifacts.

• CNN vs. ViT – While both are trained on the same
threat model, the ConvNext guides the generation pro-
cess towards images with significantly more saturated
colors than the ViTs.

• Threat model – We compare the L2, ϵ = 1.5 to
L∞, ϵ = 2

255 using ViT-B/32. Interestingly, despite
these threat models being substantially different, they
both lead to generated images with similar character-
istics. Nevertheless, we find the results of the L2 case
more pleasing.

Thus, we mainly focus on the ViT-B/32 architecture and the
L2 threat model.

4. Generator-Free Text-To-Image Analysis
In this section, we provide additional information and

study different aspects of our text-to-image generation re-
sults in the generator-free setting, presented in Figure ??.
According to our procedure, we perform an iterative pro-
cess of updating K steps (empirically set to 1000). During
such updates, the generated image is modified to be more
aligned with the textual description, according to CLIPAG.
To better study the effect of the iterative process, we depict
samples in three timesteps in Figure 3– (i) the initialization
image, (ii) an intermediate image, and (iii) the final result.
In particular, Initialization depicts the starting point
of our iterative process, i.e., a sample from our GMM that
best aligns with the given text. As can be seen in the Figure,
the starting point is not a real image, as modeling images via
GMMs is limited due to their high dimensionality. Interest-
ingly, CLIPAG is capable of transforming such inputs into
perceptually meaningful content that corresponds with the
text. One can see that in the intermediate point, the re-
sulting images contain most of the high-level features. The
process from the intermediate point towards the output
adds mainly low-level details and refines the visual content.

To better understand the generative capabilities and ex-
plore different trends in the synthesis process, we provide
additional qualitative results in Figure 7. As can be seen,
in the top two rows, the outputs of our proposed algorithm
are relatively natural and realistic. However, CLIPAG of-
ten prefers “cartoonish” outputs over realistic ones, as can
be seen in the third row. We hypothesize that this might
be affected by certain words in the target text prompt that
guides the model towards such outputs (e.g., “magical”).
We suspect such a tendency leads to lower FID scores when
measured w.r.t. natural images dataset, such as MS-COCO.
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“Green Crystal”
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Figure 2. CLIPStyler additional results. Style transfer results
of multiple images using different textual prompts with CLIP and
CLIPAG while using the style network.

In addition, our model sometimes maximizes the align-
ment with the given text by producing OCR [1, 9] infor-
mation that corresponds with the caption. For example, in
the third row in Figure 7, the model attempts to spell the
word “fiesta”, which appears in the caption. Similarly,
in the bottom row of Figure 3, the model spells “town” and
“tower” that are included in the caption.

Moreover, we aim to explore the level of stochasticity of
our framework. Our scheme includes two random steps that
introduce randomness to the synthesis process – the initial-
ization and the random augmentations. To better understand
the variability that these mechanisms introduce, we gener-
ate the same caption several times and visualize such results
in Figure 9.

Lastly, we investigate the effect of the chosen prompt
on the generated image. Until now, we do not prepend
to the target caption any guiding prefix. Now, we
study the impact of adding such prefixes that describe
the style of the desired image. In particular, we con-
sider the following prompts – “oil painting of”, “a

Initialization Intermediate Output

A stir fry of mushrooms and broccoli topped with sesame seeds in a wok.

A couple of cows standing next to each other near a street.

The tower in town has a clock displayed on it.

An old gothic church next to a cemetery with a rock fence in front.

Figure 3. Generation Trajectory. Visualization of three different
time steps in the generation process.

pencil drawing of”, “a graffiti of”, and “a
childish cartoon of”. We depict the results in Fig-
ure 8. As can be seen, the prefix strongly determines the
style of the generated images, strongly attesting to CLI-
PAG’s capability in guiding towards different stlyes, al-
though mainly trained on natural images.
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Figure 4. Initialization ablation. Comparison of our GMM initialization with random Gaussian noise in text-to-image generation.

Vanilla CLIP CLIPAG

Clean Attack Clean Attack

Input
image

Figure 5. Explainability visualizations. GradCAM [11]
heatmaps for both the baseline CLIP ViT-B-32 and CLIPAG on
ImageNet images. The targets for the GradCAM are dog,
parrot, cars and monkey, respectively. As can be seen,
both in the clean and adversarial cases, CLIPAG heatmaps are
more aligned with the objects, providing better interpretability.
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Figure 6. CLIPAG generator-free text-to-image ablation study. The effect of different design choices in the context of generator-free
image synthesis, considering different architectures and threat models.



A group of adorable animals 
having a picnic in a sunny 

meadow.

A picturesque mountain range 
with snow-capped peaks and a 

winding river.

A bustling marketplace with 
vendors selling a variety of goods.

A vibrant street market 
with stalls selling exotic 

fruits and spices.

A mystical underwater cave with glowing 
plants and curious sea creatures.

A hidden waterfall in a 
lush jungle with exotic 

plants and wildlife.

A cozy fireplace with 
crackling fire and 

comfortable armchairs.

A mystical enchanted forest with glowing 
mushrooms and mythical creatures.

A tranquil mountain retreat 
with a log cabin and 
breathtaking views.

A futuristic underwater city with 
domed structures and marine life.

A charming cafe with outdoor 
seating and blooming flowers.

A peaceful countryside cottage with a 
thatched roof and a vegetable garden.

A magical underwater palace 
with mermaids and colorful 

coral reefs.

A tranquil mountain lake with 
crystal-clear water and 

towering peaks.

A bustling city square with 
cafes, street musicians, 

and outdoor seating.

A vibrant fiesta with 
dancing, music, and 
traditional costumes.

A majestic waterfall 
cascading down a rocky 

cliff.

A bustling harbor with 
boats and ships of all 

sizes.

A peaceful countryside 
scene with rolling hills and 

a farmhouse.

A historic castle perched 
on a hill overlooking a 

picturesque town.

A picturesque lighthouse overlooking 
the sea.

An old woman sits on a 
bench and raises her 

hand.

Two male chefs cooking in 
a kitchen while another 

staff member uses a 
mobile phone.

A bathroom with a shower 
and a sink.

A kitchen counter top 
sitting next to a stove top 

oven.

A picturesque village 
nestled in the mountains.

Figure 7. CLIPAG generator-free text-to-image additional results. The top two rows present additional generator-free synthesis results
using CLIPAG. The third row demonstrates a phenomenon in which CLIPAG often opts for cartoonish and artistic content rather than a
realistic one. In the last row, we depict some fail cases in which the resulting images are inconsistent.
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Figure 8. CLIPAG generator-free text-to-image prefix effect.



A futuristic cityscape with towering skyscrapers and advanced transportation.

A hidden garden with blooming flowers and a peaceful fountain.

Figure 9. CLIPAG generator-free text-to-image stochasticity. We generate each textual description six times, to demonstrate the
stochasticity introduces by our framework.
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