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1. Discussion with works related to intermedi-
ate features
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Figure 1. Comparison of our method with previous works.

While some existing works have already explored

multi-level self-supervisions (intermediate features) in self-

supervised learning (SSL) [6,12,16,17], our method is fun-

damentally different from these works in the following as-

pects:

• Our goal is to present a novel framework to alle-
viate the “class collision problem” in contrastive
learning [2, 13], which is different from the goal

of previous works where they aim to apply self-

supervised objective over intermediate levels.

• Previous works commonly adopt a straightforward
way to extend the self-supervised objective over the
last global features to multi-level learning on the
intermediate features by inducing both intermediate

features and global features to the self-supervised ob-

jective simultaneously [6, 16, 17]. In practice, most of

them use the intermediate features from the teacher to

supervise the corresponding features from the student

(same-context in Fig. 1), which is the application of

knowledge distillation in SSL. In contrast, we pro-
pose a cross-layer learning strategy where interme-
diate features and global features are used as each
other’s supervisory signal (cross-contest in Fig. 1).

The superiority of cross-context over same-context is

shown in ablation (Tab. 5 in the main paper). More-
over, we outperform OBoW [6], which also adopts
the same-context strategy (Tab. 1, 2 in the main pa-
per, Tab. 2 in the supplementary material).

• Another work [12] encourages the intermediate rep-

resentations to learn from the last layer via the con-

trastive loss, which is still different from our cross-

context (cross-layer) learning. Besides, our objec-

tive measures the instance relations with cross-entropy

loss to alleviate the “class collision problem” while

work [12] fails to do so as it is still based on contrastive

objective.

• Therefore, compared with current works, we have
a different goal and to achieve that goal we adopt
a different way of leveraging intermediate features
for producing better supervisory signal.

2. Additional experiment results

Table 1. Results of IN-1K linear classification using hypercol-
umn. hyper is the result using hypercolumn as the input to the

linear classifier.

Method IN-1K Acc.

MoCo-v2 67.5

ReSSL 69.3

CGH 70.5

CGH (hyper) 70.8

2.1. IN-1K classification using hypercolumn

We investigate the effectiveness of hypercolumn by us-

ing it for linear classification in Tab. 1. CGH with hyper-

column outperforms its counterpart that directly uses rep-

resentation vectors after global average pooling for classi-



Table 2. Transfer learning on COCO object detection and instance segmentation using ResNet-50 pre-trained on IN-1K. We report

the bounding-box AP (APbb) for object detection and mask AP (APmk) for instance segmentation. †: our reproduction using the official

codes. ∗: results cited from [5].

Method Epochs
COCO Det. COCO Instance Seg.

APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Asymmetric loss.
MoCo-v2 [4] 200 38.8 58.0 42.0 34.0 55.2 36.3

OBoW [6]† 200 38.6 58.0 41.8 33.8 54.8 36.2

ReSSL [18]† 200 38.3 57.7 41.3 33.4 54.7 35.3

CGH 200 39.0 58.8 42.2 34.2 55.3 36.5

Symmetric loss. 2× FLOPS
SimCLR [3]∗ 200 37.9 57.7 40.9 33.3 54.6 35.3

SwAV [1]∗ 200 37.6 57.6 40.3 33.1 54.2 35.1

SimSiam [5]∗ 200 37.9 57.5 40.9 33.2 54.2 35.2

BYOL [7]∗ 200 37.9 57.8 40.9 33.2 54.3 35.0

LEWEL [11] 200 38.5 58.9 41.2 33.7 55.5 35.5

Multi-crop
CGH (Multi) 200 39.3 59.3 42.7 34.4 55.9 36.6

�� ���� ���� ��� ������ ������ ������ ����� ������

�(�S�R�F
�V

��

����

����

����

����

����

����

�
�1
�1
���7
�R
�S
����
���$
�F
�F
�X
�U�D
�F
�

�&��

�5�H�6�6�

�0�R�&�R���Y��

Figure 2. KNN validation accuracy with respect to epochs during

pre-training.

fication, which indicates the hypercolumn provides better

supervisory signal.

Table 3. Comparison of pre-training running time relative to su-

pervised training.

Method
Time/

Epoch

Linear

Acc.

VOC 07+12

Det.

Supervised 1.00 76.5 81.3

MoCo-v2 [4] 1.62 67.5 82.4

ReSSL [18] 1.62 69.3 82.2

BYOL [7] 2.90 70.6 81.4

CGH 2.01 70.5 82.6

2.2. Visualization of training progress

Following [15], we present the KNN classification accu-

racy with respect to epoch number in Fig. 2, which is a use-

ful metric to monitor the training progress. The KNN clas-

sifier is evaluated on the validation set of IN-1K. The KNN

accuracy plot shows that the proposed method achieves a

steady and consistent improvement. Note that in Fig. 2 we

perform the KNN classification using the embedding from

the MLP head as in [15]. However, in KNN evaluation, we

build the KNN classifier on top of the global average pool-

ing layer of ResNet by following [8].

2.3. COCO object detection and instance segmen-
tation

For COCO object detection and instance segmentation,

we fine-tune the Mask R-CNN [9] with ResNet-50-C4

backbone using the model pre-trained on IN-1K. Follow-

ing [4, 18], we adopt the 1x schedule used in the de-

tetron2 [14], which fine-tunes the model for 90, 000 it-

erations. The results on COCO are reported in Tab. 2.

CGH outperforms ReSSL on all tasks, which demonstrates

the effectiveness of the learned representations. Moreover,

our method achieves better performance than 2x backprop

methods like SimCLR, SwAV, SimSiam and BYOL and

competitive results with SOTA methods like MoCo-v2 [4]

and LEWEL [11].

3. Visualization of feature representations
We use t-SNE [10] to visualize the learned representation

on the training set of Tiny-ImageNet. The first 20 classes of
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Figure 3. The t-SNE visualization on the training set of Tiny-ImageNet for the first 20 classes. The classes are represented by different

colours.

Tiny-ImageNet are selected for the visualization. We re-

port the comparison results of three methods, i.e., MoCo-

v2, ReSSL and the proposed CGH in Fig. 3. As shown

in Fig. 3, the proposed CGH has better class separation

than MoCo-v2 and ReSSL. The t-SNE visualization results

demonstrate that the proposed CGH can produce more dis-

criminative representations, which benefit the performance

on various downstream tasks.

4. Training cost analysis
In this section, we compare the training cost of our

method with the baselines in Tab. 3. For all methods, we

perform the pre-training on IN-1K for 200 epochs with

ResNet-50 backbone using 2 NVIDIA A100 GPUs. We

measure the time consumption relative to supervised IN-

1K training (“Supervised”) based on the running time of

one training epoch (“Time/Epoch”). Note that BYOL uses

a batch size of 4096 to achieve the reported performance

while we report the training cost using a batch size of 256

due to limited GPU memory. The results show that CGH

outperforms ReSSL by 1.2% and 0.4% on IN-1K linear

classification and PASCAL VOC object detection with rea-

sonable cost increase (2.01 vs. 1.62). Moreover, com-

pared with 2x backprop methods like BYOL, the proposed

method achieves 1.2% improvement on detection and simi-

lar performance on classification (70.5 vs. 70.6) with much

less training cost (2.01 vs. 2.90).

5. Negative societal impact
Generally self-supervised learning needs to pre-train

with multiple GPUs for a long time to achieve competitive

results with supervised learning. Our method also has such

limitation. However, our method has better performance

than SOTA self-supervised learning methods with similar

(or shorter) training time, e.g., our CGH (1x backprop)

achieves compatible performance with BYOL (2x backprop

method with longer training time) on classification and ob-

ject detection (Tab. 3).
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