
A. Baseline Post-Processing Operations
In order to be able to compare the generic baselines

with STEP, we had to couple them with post-processing
operations. The biggest challenge was regarding queries
with spaces, since generic models are usually trained at
word-granularity level. The post-processing operations per-
formed during validation and test differ from each other due
to the nature of the queries and text found in them.

A.1. Validation Split

Our validation set contains queries with either 1 space
or no spaces. When the query contains no space, all in-
stances that do not match the queried regular expression get
removed. The rest of the instances are considered positive
instances.

When a query contains a space we split it into two sub-
queries. Each sub-query is one side of the query, the space
being the splitting point. The output instances of the model
are filtered out if they do not match one of the two sub-
queries. Once the instances are filtered, we merge pair of
instances that match the sub-queries and are closer than a
certain threshold. We merge both the polygons of the in-
stances and the translation with a space between transcrip-
tions. Figure 1 shows how these post-processing operations
are performed on an example from the validation set.

A.2. Test Split

The queries featured in the test split can contain more
than one space, as seen in the example formats in Table 2.
Furthermore, some instances feature arbitrary separations
between the different characters of the code that do not fol-
low any specific format (see examples in Figure 6), which
can cause unpredictable detection fragmentations. See for
example the TESTR’s row in Figure 3, where the TARE and
UIC codes have been fragmented at arbitrary points.

In order to merge the detections under such circum-
stances, we have opted for a different strategy. First, we
check if any of the unmerged instances match the query.
Next, we iteratively merge pairs of instances that are close
to each other (within a certain threshold). After each itera-
tion, we check if the newly merged pairs match the query.
The process ends when we can not merge any more in-
stances. Instances that have been matched are not merged
with more instances in the next iteration. This process is
illustrated in Figure 2.

B. Baseline Training Details
In all the baselines we use pre-trained weights provided

by the authors to initialize the networks and fine-tuned on
the vanilla HierText training split. Unless explicitly stated,
we use the default training settings used in the original im-
plementations.

On ABCnet v2 [3] we use the provided pre-trained
weights on their SynthText 150k dataset and MLT 17. We
converted the HierText polygonal annotations to the ABC-
net bezier annotations. We fine-tune on HierText for 50k
iterations with an initial learning rate of 10−3, which is de-
cayed by a factor of 0.1 at 20k and 40k iterations and a batch
size of 9 images. Since HierText features some images with
dense text, we increase the maximum number of proposals
per image to 300.

For SwinTextSpotter [2] we use the provided pre-
trained weights trained on MLT 17 and the SynthText 150k
datasets. We fine-tune the model on HierText for 35k itera-
tions with an initial learning rate of 10−4, decayed by 0.1 at
step 35k, and a batch size of 4. We also increase the number
of proposals per image to 300.

Finally, we use the pre-trained weights provided by the
authors of TESTR which contains, as we said, the Synth-
Text 150k, MLT 17 [4] and Total-Text datasets. The model
is trained for 30k iterations with an initial learning rate of
10−4, a learning rate decay of 0.1 at iteration 25k, and a
batch size of 6 images. The maximum number of queries is
increased to 300.

C. Architecture Details

STEP uses a ResNet-50 [1] as the feature extraction
backbone of the network. We use the same setup as TESTR
[6], the encoder contains a deformable transformer [7] with
6 layers, 8 heads, and 4 sampling points. Our encoder
also contains a regular cross-attention layer with the queried
regex, which also has 6 layers and 8 heads. Each one of
the two decoder layers is composed of a deformable cross-
attention layer between the features and the queries, the
intra and inter-self attention layer of the queries, and the
cross-attention layer between the queries and the encoded
regex. All the decoder attention blocks have 6 layers and 8
heads, the deformable attention also uses 4 sampling points.
The embedding dimension is 256 in all the cases. The num-
ber of queries of the decoders is 100.

The regex representation embedding is a feed-forward
neural network that projects each one of the hm vectors to
the embedding size of the tokens. This layer is composed
of 2 hidden fully connected layers of 256 dimensions and
an output layer of the same size. Each layer has a ReLU
activation function.

C.1. Model Loss

Our model follows the same training objectives de-
scribed in [6]. The decoder training losses include, for each
sub-query j, an instance classification loss Lj

cls, an L1 dis-
tance loss Lj

coord for control-point regression, and a cross-
entropy based character classification loss Lj

char. Opposed
to TESTR, the Lj

cls loss uses both the character and location

(a) (b)

(c) (d)

Figure 1. The target regular expression we want to find in Figure 1a is “[A-Za-z]{2}\d{2}[][A-Za-z]{2}\d{2}”. Figure 1b shows the
raw output of TESTR. The output instances are filtered by matching the two sub-queries resulting in splitting the main query by the space
(in this case, “[A-Za-z]{2}\d{2}” for both sub-queries), shown in figure 1c. The two remaining instances are merged since their distance
is lower than the established threshold. Figure 1d shows the final polygons and transcriptions merged into a single instance.

sub-queries to calculate the classification confidence, as op-
posed to location-only. The final decoder loss is Lj

dec =∑
j(λclsLj

cls + λcoordLj
coord + λcharLj

char). λcls, λcoord

and λchar are used to weight the losses. We use the original
values of λcls = 2.0, λcoord = 5.0 and λchar = 4.0. The
proposals of the guidance generator of the encoder are also
supervised with an instance classification loss Lj

cls and a co-
ordinate regression loss Lj

coord. Additionally, the encoder
loss uses the generalized IoU loss Lj

gIoU defined by [5] for
bounding box regression. The encoder loss is defined as
Li
enc =

∑
j(λclsLi

cls+λcoordLi
coord+λgIoULi

gIoU), with
λgIoU = 2.0.

D. Regex encoding

With the multi-hot encoding of the regex we can repre-
sent different matching operations. As described in section
3.1.1, the encoding H is composed by M multi-hot encoded
vectors H = (h1, . . . ,hM). Each vector hm has a total of
K elements hm = (hm,1, . . . , hm,K), where K is equal to

the size of our character set. Each element k corresponds to
a character of the set, and an element hm,k is set to 1 if that
character matches the queried regex in that position. This
representation provides a very fine-grained level of infor-
mation at each position m but, while a flexible and powerful
representation, it might be difficult to learn.

As an alternative to this approach, we have also tried
a less complex encoding of the regex. Instead of using
the multi-hot representation, we have tried a simpler and
smaller one-hot approach. We redefine each vector hm as
hm = (hm,1, . . . , hm,C), where C is equal to the number of
classes we can represent at each character position m. We
have defined a total of 6 classes; space, number, letter, sep-
arator (characters , - and), special (rest of the alphabet),
and padding. The disadvantage of this representation is that
we no longer can match specific characters at a certain po-
sition. For example, the query “A\d{2}0” would not be
possible.

Table 1 shows the End-To-End and Detection results on
the evaluation set. The multi-hot approach obtains better re-

(a)

(b) (c)

(d) (e)

Figure 2. The target regular expression we want to find in Figure 2a is “\d{11}-\d”. Figure 2b shows the raw output of TESTR. Figures
2c and 2d show two iterations of the instance merging process. In the first Figure, it has merged part of the UIC target code (the 12-number
code) that was fragmented. The next step has fully merged the remaining bit of the code. Since the resulting transcription matches the
query, this instance would not be further merged with others. Other instances that do not follow the query are removed, as seen in figure
2e.

sults in both the Detection and End-To-End tasks, although
the average edit distance is slightly lower using the one-hot
encoding.

E. Further Qualitative Analysis

E.1. Baselines Comparison

Figure 3 shows additional qualitative results of the base-
lines and STEP on samples from the test set. In the baseline
results, we have not yet applied post-processing operations
to showcase the raw output of these models. This Figure
shows how the conditioning of our model results in a single
detection, reducing the chance of detection failures and the
need for post-processing operations.

E.2. Failure Cases

Figure 4 shows typical failure cases of STEP. Figure 4a
shows a misspelled BIC code. While STEP’s regex-based
approach reduces spelling mistakes (such as mixing certain
numbers and letters), it still can generate a wrong transcrip-
tion among characters of the same type. Figure 4b shows
a UIC failure case where the transcription has the wrong
format (one of the digits is missing). UIC codes pose a par-
ticular challenge due to their length and multiple spaces. In
figure 4c the model has wrongly detected and transcribed
one of such cases. STEP is also not exempt from false pos-

itives, in Figure 4d the model has been given the regex of a
UIC code and wrongly read unrelated text.

E.3. Multiple Instances

As Figure 5 shows, our model is capable of success-
fully detecting and recognizing multiple targets for a sin-
gle query. During training, we match the generated regex
with all the instances of the ground truth. Since multiple in-
stances can match this query, our model learns that a single
query can have multiple instances as the ground truth.

F. Test Dataset Details

Table 2 shows the number of instances for each one of
the 6 codes and an example of their formats. Figure 6 also
shows more examples of the different varieties of the codes
of the test set.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016. 1

[2] Mingxin Huang, Yuliang Liu, Zhenghao Peng, Chongyu Liu,
Dahua Lin, Shenggao Zhu, Nicholas Yuan, Kai Ding, and
Lianwen Jin. Swintextspotter: Scene text spotting via better

Encoding End-To-End Detection
Precision Recall F-score Avg. ED Precision Recall F-score

One-Hot 0.72 0.57 0.63 0.11 0.79 0.63 0.73
Multi-Hot 0.78 0.64 0.71 0.13 0.86 0.69 0.76

Table 1. End-To-End and Detection detections on the evaluation split using the One-Hot and Multi-Hot regex encoding approaches.

BIC Phone Number TARE Tonnage UIC

ABCnet v2

SwinTS

TESTR

STEP

Figure 3. Qualitative results of the baselines and STEP on some examples from the test set.

Code Type Num. Example Format
BIC 329 “BICU 342894 0”
UIC 407 “2837 58 47 391-1”

TAREs 382 “25.000 KG” or “25000 kg”
Phone Numbers 109 “123-456-7890”

Tonnage 659 “25.0t” or ”25t“
License Plates 121 “ABC 1234”

Table 2. Codes featured in our test split and examples of their
format.

synergy between text detection and text recognition. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4593–4603, 2022. 1

[3] Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen
Jin, and Liangwei Wang. Abcnet: Real-time scene text spot-
ting with adaptive bezier-curve network. In proceedings of the
IEEE/CVF conference on computer vision and pattern recog-
nition, pages 9809–9818, 2020. 1

[4] Nibal Nayef, Fei Yin, Imen Bizid, Hyunsoo Choi, Yuan
Feng, Dimosthenis Karatzas, Zhenbo Luo, Umapada Pal,
Christophe Rigaud, Joseph Chazalon, et al. Icdar2017 robust
reading challenge on multi-lingual scene text detection and
script identification-rrc-mlt. In 2017 14th IAPR international
conference on document analysis and recognition (ICDAR),
volume 1, pages 1454–1459. IEEE, 2017. 1

[5] Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir
Sadeghian, Ian Reid, and Silvio Savarese. Generalized inter-
section over union: A metric and a loss for bounding box re-
gression. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 658–666, 2019. 2

[6] Xiang Zhang, Yongwen Su, Subarna Tripathi, and Zhuowen
Tu. Text spotting transformers. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9519–9528, 2022. 1

[7] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable trans-
formers for end-to-end object detection. arXiv preprint
arXiv:2010.04159, 2020. 1

(a) (b) (c) (d)

Figure 4. Qualitative examples where STEP has failed to read a BIC code (4a), a UIC code (4b and 4c), and produced a false positive using
the UIC regex (4d).

(a) Query: “\d{2}:\d{2}” (b) Query: “$\d.\d”

Figure 5. Our model is capable of detecting and reading multiple targets with a single query.

BIC Phone Number TARE Tonnage UIC

Figure 6. Examples of the different codes featured in our test dataset. The format of some codes, such as the UIC or BIC codes, feature
different separations and spaces in their format.

	. Baseline Post-Processing Operations
	. Validation Split
	. Test Split

	. Baseline Training Details
	. Architecture Details
	. Model Loss

	. Regex encoding
	. Further Qualitative Analysis
	. Baselines Comparison
	. Failure Cases
	. Multiple Instances

	. Test Dataset Details

