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1. Dataset - Gesture Coding and Statistics
This section provides an overview of the gesture anno-

tation process and the results of the inter-rater reliability
check (for gesture identification and coding). The anno-
tation was first leveraged by a study in Rasenberg et al. [5]
to study how cross-speaker gestural and lexical alignment
emerges.

Gesture Annotation In this dataset, only the stroke phase
of co-speech gestures was annotated, which is the most
meaning-bearing phase [2, 4]. Gestures were then divided
into three categories: (1) iconic gestures that represent
physical attributes or actions connected to a referent, (2) de-
ictic gestures, which are often known as pointing gestures,
and (3) other gestures, denoting predominantly beat and in-
teractive gestures.

Statistics The fact that the dataset is collected in a refer-
ential game context made iconic gestures the most common
category. In detail, the classification of annotated gestures is
distributed as follows: a significant majority of 4952 iconic
gestures, 360 of other types, and a relatively small count of
145 deictic gestures. Additionally, to distinguish between
actual gestures and non-gestures, 642 movement segments
were coded, encompassing self-adjustments or hand move-
ments, as non-gestures. Regarding the length of the anno-
tated strokes, the data indicates an average time of 0.58 sec-
onds, with the most common duration being 0.24 seconds
and a median value of 0.41 seconds.

Inter-rater Reliability The co-speech gesture coding
procedures were conducted in two parts. The codings were
assessed for inter-rater reliability based on trials from the to-
tal dataset and involved two independent coders. In the first
part, 96 trials were coded, yielding 296 gesture annotations
for comparison. The coders agreed on gesture identification
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Figure 1. The architecture of the proposed model as outlined in
Section 2.

89.2% of the time. A specialized Staccato algorithm [3]
was used to account for variation in handedness, annotation
length, and the number of segments, resulting in scores be-
tween 0.71 and 0.80 (on a scale from -1 to 1), suggesting
similar segmentation understanding. The second part had
a similar procedure, generating 406 gesture comparisons.
The inter-rater agreement was slightly lower at 84.7%. The
same Staccato algorithm was used to standardize segmenta-
tion, with the scores ranging between 0.61 and 0.77.

2. Implementation & Model Parameters

Implementation Details We train all our models with the
same set of hyperparameters, which were identified through



Layer Type Layer Details Dimensions

ST-GCNs Model
Input ST-graph 3×27×18
Model’s 10 layers Table 2
Output 256

Transformer Encoder

Positional encoding layer input 256
Positional encoding sequence max length 40
Four stacked Transformer Encoders input 256
Transformer Encoders Feed-forward networks 128×4
Transformer Encoders Attention heads 8
Output 256

FCNNs

Layer 1 Input 256
Layer 1 Output 128
Layer 3 Input 128
Layer 3 Output 128
Layer 5 Input 128
Layer 5 Output Number of labels

Table 1. Layer-wise structure and dimensions of the proposed model’s components: ST-GCNs, Transformer Encoders, and the Fully
Connected Neural Networks.

a process of random search. We use stochastic gradient de-
scent with 0.1 base learning rate and an L2-regularization
term with weight 10−4 to update models’ weights. We in-
crease the learning rate linearly for the first 20 epochs and
divide it by 10 at the 50th epoch. We train models for 80
epochs using 8 Nvidia A100 video cards with a batch size
of 256, which was enough for the models to converge.

Model Layers and Dimensions The proposed model,
as depicted in Figure 1, consists of the following com-
ponents: (1) Spatio-Temporal Graph Convolutional Net-
works (ST-GCNs), (2) Transformer Encoders, (3) Posi-
tion Wise Fully Connected Neural Networks (FCNNs),
and (4) sequence labeler layer that employs Conditional
Random Fields (CRFs). Table 1 lists the architecture’s
layers and their dimensions. Section 2 gives a brief
overview of ST-GCNs, and Table 2 list our ST-GCNs lay-
ers and their dimensions. The full implementation of the
model is available in the GitHub repository: https:
/ / github . com / EsamGhaleb / Multi - Phase -
Gesture-Detection

ST-GCNs GCNs, a subset of graph neural networks, are
models that have emerged from the success of traditional
Convolutional Neural Networks (CNNs). They extend the
convolution operation (template matching) from CNNs to
accommodate data structured as graphs, allowing them to
handle data with varying structures. GCNs are ideal for data
structures that can be represented as graphs, such as spatio-
temporal graphs of body joints, social networks or molecu-
lar structures [6]. In our research, GCNs prove particularly

Layer In Channel Out Channel Stride
l1 3 64 None
l2 64 64 None
l3 64 64 None
l4 64 64 None
l5 64 128 2
l6 128 128 None
l7 128 128 None
l8 128 256 2
l9 256 256 None

l10 256 256 None

Table 2. ST-GCNs layers parameters and dimensions [1].

useful given the nature of our data, which uses ST-graphs to
represent skeletal movements.

Technically, ST-GCNs extend conventional convolution
operations to GNNs with features represented on a spa-
tial graph V . The input feature map fin at frame t is a
c-dimensional vector for each node in the graph. For in-
stance, in our study, c is a three-dimensional vector of each
joint position (i.e. x and y) and the joint detection confi-
dence at the input layer. The convolution operation is per-
formed for each node vi according to the formula: fout(vi)=

∑v j∈Bi
1

Zi j
fin(v j).w(li(v j)) where Bi represents the neigh-

boring nodes v j, Zi j is a normalization term, w is a learnable
kernel, and li maps the weight vectors for each vertex.

In the spatial context, ST-GCNs adopt spatial configu-
ration partitioning to map weights, creating three subsets,
denoted as K: the root node, a centripetal group, and cen-



trifugal nodes. The convolution operation, in its vectorized
form, is defined as fout = ∑

Kv
k Ak ⊙Mk(f inWk) where Kv

is the kernel size, Ak is the adjacency matrix normalized by
D̂− 1

2 , and M and W are learnable matrices. Temporal con-
volution is implemented with an L× 1 convolutional layer
to learn features from adjacent frames.

In our implementation, we used a pre-trained model for
sign language recognition by Jiang et al. [1]. Table 2 lists
the ST-GCNs model’s layers and dimensions. Finally, a
comprehensive description of this model can be found in
the seminal work on ST-GCNs by Yan et al. [6].
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