Beyond RGB: A Real World Dataset for Multispectral Imaging in Mobile Devices
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S1. Method Implementation Details

The network was trained with the Adam optimizer [3] (81 = 0.9, B2 = 0.999) with an initial learning rate of 3 - 1073,
Training was performed for 30 epochs on random crops of size 256 x 256. We use 128 x 128 bins for the CCC histogram
and set the loss weights for the final loss as 1, 30,0.0001 for w;, we and ws respectively. The channels triplets were chosen
to be the following 21 triplets: (0, 1, 2), (1, 2, 3), (2, 3,4), (3,4, 5), (4,5, 6), (5,6,7), (6,7, 8), (7, 8,9), (8,9, 10), (9, 10,
11), (10, 11, 12), (11, 12, 13), (12, 13, 14), (13, 14, 15), (0, 5, 9), (1, 6, 10), (2, 7, 11), (3, 8, 12), (4,9, 13), (5, 10, 14) and (3,
6, 15). The first 14 triplets are combinations of channels with large overlapping areas and the last 7 triplets are combinations
of channels with sparse overlapping areas.

The network architecture is detailed in Table S1. The architecture of a single CCC pyramid is described in Table S2.

Layer Configuration Layer Output
Input Create log-chroma histograms for M triplets M x 128 x 128
M CCC pyramids See Table S2 M x 128 x 128
Convl c:2M, k:5x%x5 2M x 128 x 128
Batch normalization c:2M 2M x 128 x 128
Max pooling k:4x4 2M x 32 x 32
Activation ReLU 2M x 32 x 32
Conv?2 c:4M, k:5 x5 4M x 32 x 32
Batch normalization c:4M AM x 32 x 32
Max pooling k:4x4 AM x 4 x 4
Activation ReLLU AM x 4 x 4
Conv3 c:4M, k:5x5 4M x 4 x 4
Batch normalization c:4M 4M x 4 x 4
Activation ReLU AM x 4 x 4
Flatten AM -4 -4
Linearl o:100 100

Activation RelLU 100

Linear2 0:50 50

Activation ReLLU 50

Linear3 0:36 36

Activation Exponent 36

Table S1. Network architecture for the ISE problem. Here, ¢, k and o, stand for number of channels, kernel size and output size respectively.



Layer Configuration Layer Output
Input Log-Chroma UV Histogram 128 x 128
Convl c:1,k:5x5 128 x 128
Downsample Bilinear interpolation, sf : 0.5 64 x 64
Conv2 c:1,k:5%x5H 64 x 64
Downsample Bilinear interpolation, sf : 0.5 32 x 32
Conv3 c:1,k:5x%x5 32 x 32
Downsample Bilinear interpolation, sf : 0.5 16 x 16
Conv4 c:1,k:5x%x5 16 x 16
Downsample Bilinear interpolation, sf : 0.5 8 x8
Conv5s c:1,k:5x%x5 8% 8
Downsample Bilinear interpolation, sf : 0.5 4 x4
Conv6 c:1,k:5x5 4 x4
Downsample Bilinear interpolation, sf : 0.5 2x2
Conv7 c:1,k:5x5 2x2
Blur and upsample Bilinear interpolation, sf : 2 4 x4
Sum Previous layer output and output of A4
conv6
Blur and upsample Bilinear interpolation, sf : 2 8§ x8
Sum Previous layer output and output of 3 x 8
conv5
Blur and upsample Bilinear interpolation, sf : 2 16 x 16
Sum Previous layer output and output of 16 x 16
conv4
Blur and upsample Bilinear interpolation, sf : 2 32 x 32
Sum Previous layer output and output of 39 % 39
conv3
Blur and upsample Bilinear interpolation, sf : 2 64 x 64
Sum Previous layer output and output of 64 x 64
conv2
Blur and upsample Bilinear interpolation, sf : 2 128 x 128
Sum Previous layer output and output of 198 % 128

convl

Table S2. Architecture of a single CCC pyramid. Here, ¢, k and s f, stand for number of channels, kernel size and scale factor respectively.

The kernel for the blur operation in the pyramid was set to:

0.0625 0.1250 0.0625
w= [0.1250 0.2500 0.1250{ . (S1)
0.0625 0.1250 0.0625



S2. Further Experiments & Results
S2.1. Expanded Statistics on Beyond RGB

We present expanded statistics of the results reported in the main manuscript. As is common in the color constancy
literature, we report the 25th, 50th and 75th percentiles of each result in addition to standard deviation and mean. We report
these statistics in Table S3 and Table S4 for AAys, AAys and AAxyz on the Beyond RGB dataset for all the methods tested.
Additionaly, we report results of PWIR [4] which we adapt to the MS+RGB modality by concatenating the MS and RGB
data at the input of the network.

Dataset Method AAgs I AAwys 1

mean 25% median 75% std mean 25%  median  75% std

GrayWorld 6.17 3.30 4.42 8.07 4.09
GrayEdge 8.97 5.05 7.49 1256 5.02

Lab LRMF 21.59 1994  21.21 22.83 2.28
PWIR 27.10  18.55 23.91 35.68 10.86 11.03 5.37 8.80 16.90 6.81

Ours 5.92 4.04 5.39 8.01 2.92 2.05 1.26 1.75 2.41 1.39

GrayWorld 6.85 5.73 6.60 8.05 240
GrayEdge 11.39 849 11.31 14.08 3.93

Field LRMF 21.90 20.72 2174 23.11 1.20
PWIR 16.31 11.61 15.17 21.82 6.07 6.07 5.01 3.18 8.82 3.35

Ours 7.22 3.31 6.14 9.89 5.54 2.73 1.06 1.91 347 246

Table S3. Expanded statistics of AAys and AAys comparison between the proposed method and other ISE methods on the Beyond RGB
dataset. Green and yellow highlights respectively indicate best and second best results.

Dataset  Algorithm  Input Modality AAgs | AAxyz |
mean 25%  median  75% std mean 25% median @ 75% std
RGB-0O 3.82 1.23 2.62 4.12 3.96
RGB-S 3.66 1.26 2.40 4.63 3.56
Ours MS 5.92 4.04 5.39 8.01 2.92 2.59 1.21 2.21 3.29 1.82
Lab Fusion-O 4.70 2.86 4.17 6.18 2.45 1.88 0.79 1.55 2.52 1.46
Fusion-S 4.99 2.62 4.39 6.66 3.05 2.04 0.96 1.52 2.64 1.70
MS 27.10 18.55 23.91 3568 10.86 13.35 3.05 12.91 2425 10.60
PWIR Fusion-O 2646 17.45 2434 3490 1049 12.82 2.73 11.05 23.16 10.15
Fusion-S 29.76  22.12  26.63 3746 920 14.04 3.76 12.57 2525 10.86
RGB-0O 4.58 1.75 3.54 5.80 3.74
RGB-S 5.41 2.10 4.26 6.35 5.12
Ours MS 7.22 3.31 6.14 9.89 5.54 3.52 1.33 2.27 4.72 3.74
Field Fusion-O 7.64 4.58 6.40 9.06 542 413 1.39 3.14 5.38 3.88
Fusion-S 6.90 4.26 5.31 7.53 5.85 3.35 1.18 2.44 3.47 4.22
MS 16.31 11.61 15.17 21.82  6.07 8.44 3.38 6.65 13.60  6.25
PWIR Fusion-O 17.13  13.21 18.19 2093 5.18 8.32 3.02 7.42 1435 6.03

Fusion-S 1620 9.23 15.13 2339  7.62 928 394 6.96 15.07 6.36

Table S4. Expanded statistics of AAps and AAxyz comparison of different versions of the proposed method on the Beyond RGB dataset.
RGB-0 and RGB-S respectively indicate RGB version using Oppo and Samsung devices data. Fusion-O and Fusion-S respectively indicate
fusion version of MS data together with Oppo and Samsung devices RGB data. Green and yellow highlights respectively indicate best and
second best results.

S2.2. Cross Dataset Validation

In this section, we showcase the outcomes of training our suggested approach using the KAUST dataset and subsequently
testing it on Beyond RGB, and vice versa. In both scenarios, we utilized the full dataset for training. Specifically, when



leveraging the KAUST dataset for training, we executed relighting based on the illuminants found in the Beyond RGB
dataset and adapted the spectral responses to emulate the filters of our MS camera. As depicted in Table S5, there is a
significant disparity in performance when trying to extrapolate from one dataset to the other. We note that such a performance
degradation was not observed when training our method on KAUST and testing on the CAVE SR dataset as shown in Table
2 of the main manuscript. This leads us to hypothesize that there remains a domain gap between relit SR datasets and our
own directly acquired MS dataset, highlighting the need for benchmarking algorithms on both modalities. We additionally
emphasize that this evaluation protocol allowed the algorithm to test on illuminants which were present in the test split which
does not happen in our normal evaluation protocol. This strengthens the assumption of the dataset domain gap, as the network
had an opportunity to overfit on the illuminants but still fails and does worse than the inter-domain case where there exists a
split between test and train illuminants.

Trained On Tested On AAgs |
mean 25% median  75% std
. . Beyond RGB Lab 12.54 8.47 11.56 16.00 5.79
KAUST with Beyond RGB Illuminants Beyond RGB Field 1055 447 889 1496 7.60

KAUST with Lab Illuminants 7.18  4.15 7.18 8.07 498
KAUST with Field llluminants ~ 6.60  2.75 6.34 8.69 4.14

KAUST with Lab Illuminants ~ 12.82  6.76 11.17 16.79  8.10

KAUST with Beyond RGB Illuminants

Beyond RGB KAUST with Field llluminants 1043 5.02 827 1374 7.67
Beyond RGB Lab 592 404 539 801 292
Beyond RGB Beyond RGB Field 722 331 614 989 554

Table S5. Evaluation of the generalization of our method across Beyond RGB and KAUST datasets. ”Trained On” indicates the modality
on which the model was trained and “Tested On” indicates the modality on which inference was performed. "Beyond RGB Illuminants”
indicates illuminations measured across all of the Beyond RGB dataset, ”Lab” and “Field” indicates only Beyond RGB lab and field data
respectively.

S2.3. Cross Camera Evaluation

A common concern in developing color-constancy or spectral estimation algorithms is the sensitivity to the particular
model of camera on which the algorithm is trained. We utilized the availability of multiple cameras in Beyon dRGB to assess
the effect of cross-camera application of our method. For this assessment, we trained each model on 80% of the Beyond
RGB dataset utilizing inputs from one camera while performing testing on 10% of the data of the other camera. In the fusion
modality, the MS sensor used for training and testing is common and the RGB data comes from different cameras.

We observe a degradation in the quality of the results compared to the results of Table S4, indicating that our method is
sensitive to variation of the camera.

Dataset Trainedon Tested on AAgs | AAxyz |
mean 25% median 75% std mean 25% median 75% std
RGB-0O RGB-S 4.95 1.88 3.59 6.77 4.23
Lab RGB-S RGB-0 4.58 1.51 3.14 6.56 4.13
Fusion-O Fusion-S 550 3.35 4.94 6.96 2.67 245 1.14 2.08 348 1.77
Fusion-S Fusion-O 592 4.04 5.39 801 292 259 1.21 2.21 329 1.82
RGB-0O RGB-S 736 334 5.91 849 5.76
Field RGB-S RGB-0 6.09 1.89 5.24 8.32  5.08

Fusion-O  Fusion-S  7.94  5.10 7.11 9.18 575 422 152 3.00 5.84 4.11
Fusion-S  Fusion-O ~ 7.78  5.06 6.81 9.09 460 370 1.39 2.73 493 3.39

Table S6. Results of cross-camera inference of models trained on Oppo RGB (RGB-0), Samsung RGB (RGB-S), MS+Oppo RGB (Fusion-
0O) and MS+Samsung (Fusion-S) inputs. “Trained On” indicates the modality on which the model was trained and “Tested On” indicates
the modality on which inference was performed. Green and yellow highlights respectively indicate best and second best results.



S2.4. CNN Loss Ablation

In Table S7 we show the effect of utilizing the CNN and CCC losses. The results conclusively demonstrate that Lccc is
a crucial component of the network, and moreover that propagating Lcnn adversely affects performance, underscoring the
importance of the CCC feature extraction step of the network.

Dataset Method AAgps |

Lcnw propagation  Lccc  mean  25%  median 75% std

v v 2721 2213 2572 3291 8.20

Lab v X 26.84 21.12 27.01 30.56  7.29
X v 592  4.04 5.39 8.01 292

v v 20.61 1425 2154 2499 5.71

Field v X 20.10 1490 20.68 2571 6.64
X v 7.22 3.31 6.14 9.89 554

Table S7. Ablation studies. We compare the hyper spectral angular error of our method, our method with propagation of Lcnn to the CCC
blocks and with propagation of Lcnw to the CCC block, without Lccc. Green and yellow highlights respectively indicate best and second
best results.



S3. Additional Dataset Information
S3.1. Multispectral Filter Responses
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Figure S1. Normalized spectral responses of our MS sensor. Insets: the spatial arrangement of the 4x4 CFA pattern, with the relevant
filter highlighted for each graph. The highlight color is the RGB equivalent of the channel response. Channel numbering is according to
increasing peak wavelength of each channel.

S3.2. Intrinsic and Extrinsic Calibration

Intrinsic Calibration: We employ OpenCV [1] to conduct camera intrinsic calibration using the conventional checker-
board technique. This procedure yields the camera’s projection matrix, in addition to the radial and tangential distortion
coefficients.

Extrinsic Calibration: Extrinsic calibration can be used to rectify image pairs and as a pre-processing step in many
registration algorithms. The relative pose between the cameras is not consistent throughout the scenes in the Beyond RGB
dataset. However, the ColorChecker calibration target outfitted with AprilTags offers a planar reference with well-established
dimensions in all scenes where the color checker is presented. This allows us to find the pose of each camera relative to the
calibration board and then solve for the relative poses [2]. Scenes in which the calibration target is not present will often have
the same extrinsics as the counterpart scene which does include the calibration board, but this is not guaranteed.




S4. Beyond RGB Dataset Samples

In the following section, we present a selection of samples from the Beyond RGB dataset. These examples have been
chosen to represent the diversity of the dataset in terms of varying real world and laboratory conditions. Figure S2 shows
examples of data collection in the field and in the lab. Figure S3 showcases the full data contents of a single scenario, including
an MS image, two images captured by Android devices and a spectral irradiance measurement. Figure S4 highlights a sample
of 100 images taken from the field portion of Beyond RGB. Figure S5 shows the 13 lab scenarios which were captured under
varying illuminants.

(.a) Field sc;ttings 7 (b) Lab settings

Figure S2. Beyond RGB dataset collection: (a) Capturing outdoor scene, with the color-chart presented using MS sensor and 2 Android
devices. (b) Automated scene capturing in lab viewing booth, with the color-chart presented, using MS sensor and 2 Android devices, and
an automated spectrophotometer measurement. Notice the various light sources present in the custom viewing booth.
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Figure S3. Beyond RGB dataset sample content: (a) MS (b) Oppo Find X5 Pro CPH230 and (c) Samsung Galaxy S21 Plus SM-G996B
data with and without color-chart. Inset: detection and extraction of color chart coordinates. (d) Spectrophotometer illuminant spectra

measurement.



Figure S4. Beyond RGB Field scenarios examples without color-chart presented.

Figure S5. Beyond RGB lab scenarios with color-chart presented.
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