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S1. Method Implementation Details
The network was trained with the Adam optimizer [3] (β1 = 0.9, β2 = 0.999) with an initial learning rate of 3 · 10−3.

Training was performed for 30 epochs on random crops of size 256 × 256. We use 128 × 128 bins for the CCC histogram
and set the loss weights for the final loss as 1, 30, 0.0001 for w1, w2 and w3 respectively. The channels triplets were chosen
to be the following 21 triplets: (0, 1, 2), (1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6), (5, 6, 7), (6, 7, 8), (7, 8, 9), (8, 9, 10), (9, 10,
11), (10, 11, 12), (11, 12, 13), (12, 13, 14), (13, 14, 15), (0, 5, 9), (1, 6, 10), (2, 7, 11), (3, 8, 12), (4, 9, 13), (5, 10, 14) and (3,
6, 15). The first 14 triplets are combinations of channels with large overlapping areas and the last 7 triplets are combinations
of channels with sparse overlapping areas.

The network architecture is detailed in Table S1. The architecture of a single CCC pyramid is described in Table S2.

Layer Configuration Layer Output
Input Create log-chroma histograms for M triplets M × 128× 128
M CCC pyramids See Table S2 M × 128× 128
Conv1 c : 2M , k : 5× 5 2M × 128× 128
Batch normalization c : 2M 2M × 128× 128
Max pooling k : 4× 4 2M × 32× 32
Activation ReLU 2M × 32× 32
Conv2 c : 4M , k : 5× 5 4M × 32× 32
Batch normalization c : 4M 4M × 32× 32
Max pooling k : 4× 4 4M × 4× 4
Activation ReLU 4M × 4× 4
Conv3 c : 4M , k : 5× 5 4M × 4× 4
Batch normalization c : 4M 4M × 4× 4
Activation ReLU 4M × 4× 4
Flatten 4M · 4 · 4
Linear1 o : 100 100
Activation ReLU 100
Linear2 o : 50 50
Activation ReLU 50
Linear3 o : 36 36
Activation Exponent 36

Table S1. Network architecture for the ISE problem. Here, c, k and o, stand for number of channels, kernel size and output size respectively.



Layer Configuration Layer Output
Input Log-Chroma UV Histogram 128× 128

Conv1 c : 1, k : 5× 5 128× 128
Downsample Bilinear interpolation, sf : 0.5 64× 64

Conv2 c : 1, k : 5× 5 64× 64
Downsample Bilinear interpolation, sf : 0.5 32× 32

Conv3 c : 1, k : 5× 5 32× 32
Downsample Bilinear interpolation, sf : 0.5 16× 16

Conv4 c : 1, k : 5× 5 16× 16
Downsample Bilinear interpolation, sf : 0.5 8× 8

Conv5 c : 1, k : 5× 5 8× 8
Downsample Bilinear interpolation, sf : 0.5 4× 4

Conv6 c : 1, k : 5× 5 4× 4
Downsample Bilinear interpolation, sf : 0.5 2× 2

Conv7 c : 1, k : 5× 5 2× 2
Blur and upsample Bilinear interpolation, sf : 2 4× 4

Sum Previous layer output and output of
conv6 4× 4

Blur and upsample Bilinear interpolation, sf : 2 8× 8

Sum Previous layer output and output of
conv5 8× 8

Blur and upsample Bilinear interpolation, sf : 2 16× 16

Sum Previous layer output and output of
conv4 16× 16

Blur and upsample Bilinear interpolation, sf : 2 32× 32

Sum Previous layer output and output of
conv3 32× 32

Blur and upsample Bilinear interpolation, sf : 2 64× 64

Sum Previous layer output and output of
conv2 64× 64

Blur and upsample Bilinear interpolation, sf : 2 128× 128

Sum Previous layer output and output of
conv1 128× 128

Table S2. Architecture of a single CCC pyramid. Here, c, k and sf , stand for number of channels, kernel size and scale factor respectively.

The kernel for the blur operation in the pyramid was set to:

w =

0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625

 . (S1)



S2. Further Experiments & Results
S2.1. Expanded Statistics on Beyond RGB

We present expanded statistics of the results reported in the main manuscript. As is common in the color constancy
literature, we report the 25th, 50th and 75th percentiles of each result in addition to standard deviation and mean. We report
these statistics in Table S3 and Table S4 for ∆AHS, ∆AMS and ∆AXYZ on the Beyond RGB dataset for all the methods tested.
Additionaly, we report results of PWIR [4] which we adapt to the MS+RGB modality by concatenating the MS and RGB
data at the input of the network.

Dataset Method ∆AHS ↓ ∆AMS ↓

mean 25% median 75% std mean 25% median 75% std

Lab

GrayWorld 6.17 3.30 4.42 8.07 4.09
GrayEdge 8.97 5.05 7.49 12.56 5.02

LRMF 21.59 19.94 21.21 22.83 2.28
PWIR 27.10 18.55 23.91 35.68 10.86 11.03 5.37 8.80 16.90 6.81
Ours 5.92 4.04 5.39 8.01 2.92 2.05 1.26 1.75 2.41 1.39

Field

GrayWorld 6.85 5.73 6.60 8.05 2.40
GrayEdge 11.39 8.49 11.31 14.08 3.93

LRMF 21.90 20.72 21.74 23.11 1.20
PWIR 16.31 11.61 15.17 21.82 6.07 6.07 5.01 3.18 8.82 3.35
Ours 7.22 3.31 6.14 9.89 5.54 2.73 1.06 1.91 3.47 2.46

Table S3. Expanded statistics of ∆AHS and ∆AMS comparison between the proposed method and other ISE methods on the Beyond RGB
dataset. Green and yellow highlights respectively indicate best and second best results.

Dataset Algorithm Input Modality ∆AHS ↓ ∆AXYZ ↓

mean 25% median 75% std mean 25% median 75% std

Lab

RGB-O 3.82 1.23 2.62 4.12 3.96
RGB-S 3.66 1.26 2.40 4.63 3.56

Ours MS 5.92 4.04 5.39 8.01 2.92 2.59 1.21 2.21 3.29 1.82
Fusion-O 4.70 2.86 4.17 6.18 2.45 1.88 0.79 1.55 2.52 1.46
Fusion-S 4.99 2.62 4.39 6.66 3.05 2.04 0.96 1.52 2.64 1.70

MS 27.10 18.55 23.91 35.68 10.86 13.35 3.05 12.91 24.25 10.60
PWIR Fusion-O 26.46 17.45 24.34 34.90 10.49 12.82 2.73 11.05 23.16 10.15

Fusion-S 29.76 22.12 26.63 37.46 9.20 14.04 3.76 12.57 25.25 10.86

Field

RGB-O 4.58 1.75 3.54 5.80 3.74
RGB-S 5.41 2.10 4.26 6.35 5.12

Ours MS 7.22 3.31 6.14 9.89 5.54 3.52 1.33 2.27 4.72 3.74
Fusion-O 7.64 4.58 6.40 9.06 5.42 4.13 1.39 3.14 5.38 3.88
Fusion-S 6.90 4.26 5.31 7.53 5.85 3.35 1.18 2.44 3.47 4.22

MS 16.31 11.61 15.17 21.82 6.07 8.44 3.38 6.65 13.60 6.25
PWIR Fusion-O 17.13 13.21 18.19 20.93 5.18 8.32 3.02 7.42 14.35 6.03

Fusion-S 16.20 9.23 15.13 23.39 7.62 9.28 3.94 6.96 15.07 6.36

Table S4. Expanded statistics of ∆AHS and ∆AXYZ comparison of different versions of the proposed method on the Beyond RGB dataset.
RGB-O and RGB-S respectively indicate RGB version using Oppo and Samsung devices data. Fusion-O and Fusion-S respectively indicate
fusion version of MS data together with Oppo and Samsung devices RGB data. Green and yellow highlights respectively indicate best and
second best results.

S2.2. Cross Dataset Validation

In this section, we showcase the outcomes of training our suggested approach using the KAUST dataset and subsequently
testing it on Beyond RGB, and vice versa. In both scenarios, we utilized the full dataset for training. Specifically, when



leveraging the KAUST dataset for training, we executed relighting based on the illuminants found in the Beyond RGB
dataset and adapted the spectral responses to emulate the filters of our MS camera. As depicted in Table S5, there is a
significant disparity in performance when trying to extrapolate from one dataset to the other. We note that such a performance
degradation was not observed when training our method on KAUST and testing on the CAVE SR dataset as shown in Table
2 of the main manuscript. This leads us to hypothesize that there remains a domain gap between relit SR datasets and our
own directly acquired MS dataset, highlighting the need for benchmarking algorithms on both modalities. We additionally
emphasize that this evaluation protocol allowed the algorithm to test on illuminants which were present in the test split which
does not happen in our normal evaluation protocol. This strengthens the assumption of the dataset domain gap, as the network
had an opportunity to overfit on the illuminants but still fails and does worse than the inter-domain case where there exists a
split between test and train illuminants.

Trained On Tested On ∆AHS ↓

mean 25% median 75% std

KAUST with Beyond RGB Illuminants
Beyond RGB Lab 12.54 8.47 11.56 16.00 5.79

Beyond RGB Field 10.55 4.47 8.89 14.96 7.60

KAUST with Beyond RGB Illuminants
KAUST with Lab Illuminants 7.18 4.15 7.18 8.07 4.98

KAUST with Field Illuminants 6.60 2.75 6.34 8.69 4.14

Beyond RGB
KAUST with Lab Illuminants 12.82 6.76 11.17 16.79 8.10

KAUST with Field Illuminants 10.43 5.02 8.27 13.74 7.67

Beyond RGB
Beyond RGB Lab 5.92 4.04 5.39 8.01 2.92

Beyond RGB Field 7.22 3.31 6.14 9.89 5.54

Table S5. Evaluation of the generalization of our method across Beyond RGB and KAUST datasets. ”Trained On” indicates the modality
on which the model was trained and ”Tested On” indicates the modality on which inference was performed. ”Beyond RGB Illuminants”
indicates illuminations measured across all of the Beyond RGB dataset, ”Lab” and ”Field” indicates only Beyond RGB lab and field data
respectively.

S2.3. Cross Camera Evaluation

A common concern in developing color-constancy or spectral estimation algorithms is the sensitivity to the particular
model of camera on which the algorithm is trained. We utilized the availability of multiple cameras in Beyon dRGB to assess
the effect of cross-camera application of our method. For this assessment, we trained each model on 80% of the Beyond
RGB dataset utilizing inputs from one camera while performing testing on 10% of the data of the other camera. In the fusion
modality, the MS sensor used for training and testing is common and the RGB data comes from different cameras.

We observe a degradation in the quality of the results compared to the results of Table S4, indicating that our method is
sensitive to variation of the camera.

Dataset Trained on Tested on ∆AHS ↓ ∆AXYZ ↓

mean 25% median 75% std mean 25% median 75% std

Lab

RGB-O RGB-S 4.95 1.88 3.59 6.77 4.23
RGB-S RGB-0 4.58 1.51 3.14 6.56 4.13

Fusion-O Fusion-S 5.50 3.35 4.94 6.96 2.67 2.45 1.14 2.08 3.48 1.77
Fusion-S Fusion-O 5.92 4.04 5.39 8.01 2.92 2.59 1.21 2.21 3.29 1.82

Field

RGB-O RGB-S 7.36 3.34 5.91 8.49 5.76
RGB-S RGB-0 6.09 1.89 5.24 8.32 5.08

Fusion-O Fusion-S 7.94 5.10 7.11 9.18 5.75 4.22 1.52 3.00 5.84 4.11
Fusion-S Fusion-O 7.78 5.06 6.81 9.09 4.60 3.70 1.39 2.73 4.93 3.39

Table S6. Results of cross-camera inference of models trained on Oppo RGB (RGB-O), Samsung RGB (RGB-S), MS+Oppo RGB (Fusion-
O) and MS+Samsung (Fusion-S) inputs. ”Trained On” indicates the modality on which the model was trained and ”Tested On” indicates
the modality on which inference was performed. Green and yellow highlights respectively indicate best and second best results.



S2.4. CNN Loss Ablation

In Table S7 we show the effect of utilizing the CNN and CCC losses. The results conclusively demonstrate that LCCC is
a crucial component of the network, and moreover that propagating LCNN adversely affects performance, underscoring the
importance of the CCC feature extraction step of the network.

Dataset Method ∆AHS ↓

LCNN propagation LCCC mean 25% median 75% std

Lab
✓ ✓ 27.21 22.13 25.72 32.91 8.20
✓ ✗ 26.84 21.12 27.01 30.56 7.29
✗ ✓ 5.92 4.04 5.39 8.01 2.92

Field
✓ ✓ 20.61 14.25 21.54 24.99 5.71
✓ ✗ 20.10 14.90 20.68 25.71 6.64
✗ ✓ 7.22 3.31 6.14 9.89 5.54

Table S7. Ablation studies. We compare the hyper spectral angular error of our method, our method with propagation of LCNN to the CCC
blocks and with propagation of LCNN to the CCC block, without LCCC. Green and yellow highlights respectively indicate best and second
best results.



S3. Additional Dataset Information
S3.1. Multispectral Filter Responses

Figure S1. Normalized spectral responses of our MS sensor. Insets: the spatial arrangement of the 4x4 CFA pattern, with the relevant
filter highlighted for each graph. The highlight color is the RGB equivalent of the channel response. Channel numbering is according to
increasing peak wavelength of each channel.

S3.2. Intrinsic and Extrinsic Calibration

Intrinsic Calibration: We employ OpenCV [1] to conduct camera intrinsic calibration using the conventional checker-
board technique. This procedure yields the camera’s projection matrix, in addition to the radial and tangential distortion
coefficients.

Extrinsic Calibration: Extrinsic calibration can be used to rectify image pairs and as a pre-processing step in many
registration algorithms. The relative pose between the cameras is not consistent throughout the scenes in the Beyond RGB
dataset. However, the ColorChecker calibration target outfitted with AprilTags offers a planar reference with well-established
dimensions in all scenes where the color checker is presented. This allows us to find the pose of each camera relative to the
calibration board and then solve for the relative poses [2]. Scenes in which the calibration target is not present will often have
the same extrinsics as the counterpart scene which does include the calibration board, but this is not guaranteed.



S4. Beyond RGB Dataset Samples
In the following section, we present a selection of samples from the Beyond RGB dataset. These examples have been

chosen to represent the diversity of the dataset in terms of varying real world and laboratory conditions. Figure S2 shows
examples of data collection in the field and in the lab. Figure S3 showcases the full data contents of a single scenario, including
an MS image, two images captured by Android devices and a spectral irradiance measurement. Figure S4 highlights a sample
of 100 images taken from the field portion of Beyond RGB. Figure S5 shows the 13 lab scenarios which were captured under
varying illuminants.

Figure S2. Beyond RGB dataset collection: (a) Capturing outdoor scene, with the color-chart presented using MS sensor and 2 Android
devices. (b) Automated scene capturing in lab viewing booth, with the color-chart presented, using MS sensor and 2 Android devices, and
an automated spectrophotometer measurement. Notice the various light sources present in the custom viewing booth.



Figure S3. Beyond RGB dataset sample content: (a) MS (b) Oppo Find X5 Pro CPH230 and (c) Samsung Galaxy S21 Plus SM-G996B
data with and without color-chart. Inset: detection and extraction of color chart coordinates. (d) Spectrophotometer illuminant spectra
measurement.



Figure S4. Beyond RGB Field scenarios examples without color-chart presented.

Figure S5. Beyond RGB lab scenarios with color-chart presented.



References
[1] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
[2] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge university press, 2003.
[3] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International Conference on Learning

Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.
[4] Antonio Robles-Kelly and Ran Wei. A convolutional neural network for pixelwise illuminant recovery in colour and spectral images.

In 2018 24th International Conference on Pattern Recognition (ICPR), pages 109–114. IEEE, 2018.


