
So you think you can track? Supplementary material

The following appendices are included in this file to supplement the main paper.

1. Dataset Coordinate Systems
2. Homography Re-estimation Method
3. Homography Error Metrics
4. Additional GPS Trajectory Plots
5. Object Detector
6. Experimental Details
7. Treatment of Personally Identifiable Information
8. Known Data Artifacts and Anomalies
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1. Dataset Coordinate Systems
The Interstate-24 Video dataset utilizes 3 sets of coordinates utilized throughout I-24 MOTION system [7] datasets:

• Image Coordinates: are given in pixels. (y(im), x(im)) denotes the row and column of the specified pixel. By
convention the top left pixel is (0,0).

• State Plane Coordinates: specify a rectilinear and orthogonal coordinate system. The EPSG 2274 state plane coordi-
nate system for Tennessee is specified in feet relative to a known survey point. (x(st), y(st)) indicates the coordinate
(in feet) along the first (roughly east-west) and second (roughly north-south) coordinate axis defined by the state plane
coordinate system. (Note that a common conversion from state plane coordinates to latitude/longitude coordinates (e.g.
WSG84 or NAD83) can be utilized if desired.) A third orthogonal coordinate axis (z-axis) is defined and corresponds
to distance off the roadway, such that z(st) = 0 for all points on the roadway plane.

• Roadway Coordinates: are defined such that the primary (x) axis lies along the median (or more precisely, midway
between the two interior yellow lines for the interstate) at all points within the instrument extents, and the secondary
(y) axis is defined locally to perpendicular to the primary axis at all points along the roadway. All coordinates with
a distance from the primary axis less than the local radius of curvature (including all points on the roadway) have a
unique (x(r), y(r)) coordinate. By left-hand rule convention, we define the positive y-axis to be in the direction of the
eastbound roadway lanes at all points along the roadway.

1.1. Notation

Throughout the rest of this appendix to disambiguate the various coordinate systems, the following notation is used:

• x,y, and z refer to coordinate axes. A superscript (im), (st), or (r) specifies all variables corresponding to a specific
coordinate system (e.g. x(st)).

• Vectors and matrices in a specified coordinate system are denoted in bold (e.g. O(st)).

• Homography matrices are also listed in bold script, without superscript (e.g H).

• A subscript indexes a specific point (e.g. x
(st)
bbl ), and subscript i indicates an arbitrary element index from a set of

elements (e.g ai).

• An x,y, or z without a subscript indicates a generic variable along the specified axis within the specified coordinate
system.

A list of all variables along with their descriptions is given in Table 1. Transformations between image and state plane
coordinates, and transformations between state plane and roadway coordinates are detailed in the next two sections.

1.2. Image ↔ State Plane Conversion

(parts of this subsection rely on similar definitions and descriptions to the supplement in [6].) A homography relates
two views of a planar surface. For each camera, we provide homography information such that the 8-corner coordinates of
the stored 3D bounding-box annotation can be projected into any camera view for which the vehicle is visible, creating a
monocular 3D bounding box within that camera field of view. For each direction of travel in each camera view, for each
scene, a homography relating the image pixel coordinates to the state plane coordinate system is defined. (Though the
same cameras are used for different scenes, the positions of the cameras changes slightly over time due). A local flat plane
assumption is used (the state plane coordinate system is assumed to be piece-wise flat) [8]. A series of correspondence
points ai = [x(im), y(im), x(st), y(st), z(st)] are used to define this relation, where (y(im), x(im)) is the coordinate of selected
correspondence point a in pixel coordinates (row, column) and (x(st), y(st), z(st)) is the selected correspondence point in
state plane coordinates.

All selected points are assumed to lie on the state plane, so z(st) = 0 for all selected correspondence points. Visible lane
marking lines and other easily recognizable landmarks on the roadway are used as correspondence points in each camera
field of view. Each correspondence point is also labeled in global information system (GIS) software, giving the precise GPS
/ state-plane coordinate system coordinates for each labeled corresponding point. The corresponding pixel coordinates are
manually selected in each camera field of view, for each direction of travel on the roadway (see Appendix 1.5).
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Symbol Definition

H 3×3 matrix of homography parameters hij

P 3×4 matrix of homography parameters pij
s homography scale parameter
x(im), y(im) image coordinates (y indicates pixel row and x indicates pixel column)
x(st), y(st), z(st) state plane coordinates
x(r), y(r) roadway coordinates
O(st) state plane coordinates for object, equal to [o(st)

bbl ,o(st)
bbr ,o(st)

btl ,o(st)
btr ,o(st)

fbl ,o(st)
fbr ,o(st)

ftl ,o(st)
ftr ]

o
(st)
bbl back bottom left state plane coordinate of object, equal to [x(st)

bbl , y
(st)
bbl , z

(st)
bbl ]

o
(st)
c back bottom center state plane coordinate, primary reference coordinate for the object

o
(st)
spl state plane coordinates of point on center-line spline (y(r) = 0) with the same x(r) coordinate as o(st)

c

O(r) roadway coordinates for object, [x(r)o , y(r)o , l, w, h]
x(r) generic longitudinal roadway coordinate along curvilinear spline axis
y(r) generic lateral roadway coordinate along axis locally perpendicular to longitudinal roadway coordinate axis
x
(r)
o object longitudinal roadway coordinate along curvilinear spline axis

y
(r)
o object lateral roadway coordinate along axis locally perpendicular to longitudinal roadway coordinate axis
l,w,h rectangular prism dimensions (length, width and height)
F (x(r)) spline defining state plane coordinate roadway center-line spline parameterized by x(r)

G̃(x(st)) spline approximating the center-line spline in roadway coordinates x(r) parameterized by x(st)

Table 1. Summary of symbols used in this section.

A perspective transform (Equation 2) is fit to these correspondence points. We first define a 2D perspective transform
which defines a linear mapping (Equation 1) of points from one plane to another that preserves straight lines. The corre-
spondence points are then used to solve for the best perspective transform H as defined in equation 2, where s is a scale
factor.

s

x(st)
i

y
(st)
i

1

 ∼ H

x(im)
i

y
(im)
i

1

 (1)

where H is a 3× 3 matrix of parameters:

H =

h11 h12 h13

h21 h22 h23

h31 h32 h33

 (2)

For each camera field of view and each direction of travel, the best perspective transform H∗ is determined by mini-
mizing the sum of squared re-projection errors according to equation 3 as implemented in OpenCV’s find homography
function [4]:

H∗ = argmin
H

∑
i

(
x
(st)
i − h11x

(im)
i + h12y

(im)
i + h13

h31x
(im)
i + h32y

(im)
i + h33

)2

+

(
y
(st)
i − h21x

(im)
i + h22y

(im)
i + h23

h31x
(im)
i + h32y

(im)
i + h33

)2

(3)

The resulting matrix H∗ allows any point lying on the plane within the camera field of view to be converted into state
plane coordinates. The corresponding matrix Hinv can easily be obtained to project state plane coordinates on the z = 0
plane into image coordinates. However, since each vehicle is represented by a 3D bounding box, the top corner coordinates
of the box do not lie on the ground plane. A 3D perspective transform P is needed to linearly map coordinates from 3D state
plane coordinate space to 2D image coordinate space, where P is a 3× 4 matrix of parameters:

P =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

 (4)
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and P projects a point in 3D space (x′, y′, z′) into the corresponding image point (x, y) according to:

P


x(st)

y(st)

z(st)

1

 ∼ s′

x(im)

y(im)

1

 (5)

where s′ is a new scaling parameter. By observing the case where z(st) = 0, it is evident columns 1,2, and 4 of P are
equivalent to the columns of Hinv and can be fit in the same way. Thus, we need only solve for column 3 of P. Next, we note
as in [8] that (p11

p31
, p21

p31
) is the vanishing point (in image coordinates) of perspective lines drawn in the same direction as the

state plane coordinate x-axis. The same is true for the 2nd column and the state plane coordinate y-axis, the 3rd column and
the state plane coordinate z-axis, and the 4th column and the state plane coordinate origin.

Thus, to fully determine P it is sufficient to locate the vanishing point of the z-axis in state plane coordinates and to
estimate the scaling parameter p33. The vanishing point is located in image coordinates by finding the intersection point
between lines drawn in the z-direction. Such lines are obtained by manually annotating vertical lines in each camera field
of view. The scale parameter is estimated by minimizing the sum of squared reprojection errors defined in equation 6 for a
sufficiently large set of state plane coordinates and corresponding, manually annotated coordinates in image space.

P∗ = argmin
p33

∑
i

(
x
(im)
i − p11x

(st)
i + p12y

(st)
i + p13z

(st)
i + p14

p31x
(st)
i + p32y

(st)
i + p33z

(st)
i + p34

)2

+

(
y
(im)
i − p21x

(st)
i + p22y

(st)
i + p23z

(st)
i + h24

p31x
(st)
i + p32y

(st)
i + p33z

(st)
i + h34

)2

(6)

The resulting 3D perspective transform P∗ allows for the lossless conversion of points in roadway coordinates to the
corresponding points in image coordinates. Observing that a lossless conversion from image coordinates to state plane
coordinates is available provided that the converted point lies on the z(st) = 0 plane, it is possible to precisely convert a
rectangular prism from image space to state plane coordinates by i.) converting the footprint of the prism near-losslessly
into state plane coordinates (the only source of error comes from a set of 4 image coordinates that cannot be perfectly
converted into a rectangle in state plane coordinates), ii.) shifting the footprint in state plane coordinates along the z-axis,
iii.) re-projecting the resulting points back into the image, iv.) comparing the reprojected “top points” to the original top of
the rectangular prism in image coordinates, and v.) adjusting the height iteratively to minimize the re-projection error until
convergence.

1.3. State Plane → Roadway Coordinate System Conversion

Next, we consider the conversion of points in state plane coordinates to roadway coordinates. In most cases, we care to
convert a set of state plane coordinate points roughly in a rectangular prism (i.e. vehicle 3D bounding box) into roadway
coordinates; thus, we define this conversion for a rectangular prism. A single point can be converted between state plane
coordinates and roadway coordinates by treating it as a rectangular prism with zero length, width and height.

Let O(st) be a 3D bounding box representation in state plane coordinates, an 8×3 matrix of x,y, and z coordinates for
each corner of the box. (Note that these corners need not exactly correspond to an orthogonal rectangular prism, but the
roadway coordinate equivalent will be exactly orthogonal so some truncation will occur.) We reference, for example, the
back bottom right (from the perspective of the rear of the vehicle) of object O(st) as o(st)

bbr = [x
(st)
bbr , y

(st)
bbr , z

(st)
bbr ], such that =

O(st) = [o
(st)
bbl ,o

(st)
bbr ,o

(st)
btl ,o

(st)
btr ,o

(st)
fbl ,o

(st)
fbr ,o

(st)
ftl ,o

(st)
ftr ]. (For the single-point case described above, all 8 corner coordinates

are identical).
Next, Let O(r) = [x

(r)
o , y

(r)
o , l, w, h] be the corresponding object representation of O(st) in roadway coordinates. x(r) and

y(r) are the roadway coordinate longitudinal and lateral coordinates (in feet), and l, w,and h are the length, width, and height
of the object respectively (in feet).

Let o(st)c denote the back bottom center coordinate of object O(st). By convention, this point is referenced as the primary
position of object O(st). Let o(st)spl denote the point on the center-line spline (i.e. y(r) = 0) with the same x(r) coordinate
as o(st)

c .
Let F be the second-order spline parameterizing the roadway center-line in state plane coordinates. In other words, F

defines the longitudinal curvilinear axis y(r) = 0 along this spline. F is fit by manually labeling a sufficiently large number of
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points along the interior yellow line for both directions of travel (in state plane coordinates). A spline is fit to each yellow line,
and a third spline is fit to lie precisely halfway between these two splines. Spline control points are selected at suitably sparse
intervals (200 foot minimum spacing) such that the spline is relatively smooth while still capturing the roadway curvature
(see Appendix 1.6).

Given O(st), we first obtain l,w and h by computing the average distance between points on the front and back, left and
right, or top and bottom of the vehicle respectively. Next, we obtain o

(st)
c by computing the average x(st) and y(st) state

plane coordinates of the 4 back rectangular prism corners.
Next, we solve for x(r)

o by solving the following optimization:

x(r)
o = argmin

x(r)

||(F (x(r)),o(st)
c ||2 (7)

using L2-norm (Euclidean distance) between the two points in state plane coordinate space. In other words, determine
the point on the roadway spline closest to the back center of the rectangular prism o

(st)
c . This minimizing point is the

corresponding roadway longitudinal coordinate x
(r)
o , and the distance from the minimum distance point is roadway lateral

coordinate y
(r)
o .

y(r)o = min
x(r)

||(F (x(r)),o(st)
c ||2 (8)

Noting that the I-24 MOTION roadway segment has monotonically increasing x(st) coordinate, a secondary spline
G̃(x(st)) is defined to parameterize x(r) as a function of x(st), which yields a good initial guess for the closest roadway
longitudinal coordinate for a given point in state plane coordinates. This optimization can then be solved to arbitrary preci-
sion, yielding the complete roadway coordinate for the object O(r) = [x

(r)
o , y

(r)
o , l, w, h].

Constant Yellow Line Constraint: It is observed that points along the yellow line for each roadway direction of travel have
non-constant y-position due to the varying width of the median. It is desirable that the yellow line (and by extension each set
of lane-dividing markings) has constant y position. We finally apply the following shift:

y(r)o += (C − γ(x(r)
o )) (9)

where C is the desired constant yellow line y-coordinate (in this case -12 for westbound-side coordinates and +12 for
eastbound-side coordinates) and γ(x

(r)
o ) represents the uncorrected yellow-line coordinate at the given x-position per roadway

side. Note that this creates a discontinuity in the coordinate system near y = 0 on each side, but these portions of the
coordinate system are not used for objects on the roadway.

1.4. Roadway → State Plane Conversion

Reverse Yellow Line Constraint: First, the inverse yellow-line shift must be applied to the y-coordinate:

y(r)o −= (C − γ(x(r)
o )) (10)

Next, given roadway coordinates for an object O(r), first find the corresponding point on the roadway center-line spline
in state plane coordinates o(st)

c according to:

F (x(r)
o ) = o

(st)
spl (11)

To obtain the back center coordinate o(st)
c , we must offset o(st)

spl by length y(r) in the direction perpendicular to the roadway

centerline spline at o(st)
c . Let −→u F be the unit vector in the same direction as the derivative spline F ′, and let −→u 1/F be the

unit vector in the perpendicular direction (along the state plane, i.e. z(st) = 0. Note that care should be given to ensure that
the positive direction of −→u 1/F points towards the eastbound side of the roadway with positive y(r).) Then, o(st)

c is given by:

o(st)
c = o

(st)
spl + y(r) · −→u 1/F (12)

From here, the corner state plane coordinates for the right and left coordinates of the rectangular prism can be obtained
by offsetting o

(st)
c by ± 1

2 times w in the direction of −→u 1/F , and the front coordinates of the rectangular prism can similarly
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Figure 1. Correspondence points (blue) and fields of view (shaded polygons) for each roadway direction of travel, labeled in a single
camera field of view (P27C01). Around 100 correspondence points are visible for each side of the roadway.

be obtained by offsetting by l in the direction of −→u F or in the opposite direction for objects on the westbound or negative
y(r) side of the roadway. Similarly, the top coordinates can be obtained by offsetting by a factor of h in the z(st) direction.
The direction of travel for an object can be obtained as the sign of the y(r) coordinate (negative for WB, positive for EB).For
example, for an eastbound object the front top left coordinate can be obtained as:

o
(st)
ftl = o(st)

c − 1

2
· w · −→u 1/F + l · −→u F + h · [0,0,1] (13)

1.5. Correspondence Point Labeling

A brief description and a few pictures of overhead and camera fields of view.
Correspondence points are obtained for visible lane marking lines and other easily recognizable landmarks on the roadway

are used as correspondence points in each camera field of view. Labeling is carried out in a custom OpenCV GUI, with semi-
automated point selection to speed this process over the 230+ cameras utilized in this work. An average frame from each
camera is used to minimize the presence of occluding vehicles during labeling. Figure 1 shows an example of labeled
points and the labeled relevant field of view for a single camera. The corresponding pixel coordinates for each manually
selected point in each camera field of view, are stored, for each direction of travel on the roadway, each with a unique
identifier. Typically, at least 10 roadway markings or 40 correspondence points are labeled per roadway direction of travel.
Additionally, note that this initial correspondence point selection was performed for a day a few weeks prior to the day on
which video is recorded in this work.

Each correspondence point is also labeled in global information system (GIS) software, giving the precise GPS / state-
plane coordinate system coordinates for each labeled corresponding point. The same unique identifier is assigned to each
corresponding point previously labeled within a camera image. Additionally, points along each yellow line were labeled
periodically (every ∼50 feet). Figure 3 shows an example of labeled points in the state plane aerial imagery.

1.6. Centerline Spline Fitting

The following procedure was used to fit the center-line spline for the roadway coordinate system (y(r) = 0):
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Figure 2. Correspondence points (green for WB red for EB) labeled in camera imagery for all cameras on one pole (P17). Fields of view
(blue for WB and orange for EB) and a mask denoting relevant portions of the image for tracking (dotted red polygon) are also shown.
Similar plots are included in a separate file for all cameras.

Figure 3. Correspondence points labeled in aerial imagery using the GIS tool for a very small subset (∼500 feet) of roadway, for one
direction of travel only.

1. For each roadway direction of travel, fit a spline parameterizing the (x(st), y(st)) points as a function of u. Let
F(WB)(u) and F(EB)(u) denote these splines. All splines implemented in this work are based on SciPy’s spline
package [16] and are constrained to have a minimum control point spacing of 200 feet to ensure smoothness.

2. Moving along the EB yellow line spline F(EB)(u), sample points at fine (1 foot) intervals. For each sampled point u,
find the closest point on F(WB)(u) u

′. Store the midpoint u∗.

3. Fit another spline Fmed(u) to the set of midpoints from the previous step.

4. Sample Fmed(u) at fine (0.1 foot intervals). Compute the distance between each consecutive pair, and compute the
cumulative distance along the spline to each point via finite difference approximation.

5. Re-parameterize Fmed(u) such that each point on the midpoint corresponds to the integrated distance along the spline
to that point. This yields the final spline F (x(r)) used above.
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Lastly, γ(x(r))) must be computed for each roadway direction of travel. This is done by sampling F (x(r)) for each
direction at regular (5-foot) intervals and recording the distance to the closest point on each of F(WB) and F(EB). Since
these offsets change very little (∼1 foot per mile), the offsets are stored in a lookup table rather than fitting a true offset
function. Thus, γ(x(r))) returns the recorded offset from F (x(r′)) to F(WB) or F(EB) for the closest sampled value x(r′).

Figure 4a shows the labeled points from aerial imagery (yellow and black lines) and the points labeled in each image
(blue dots), transformed into roadway coordinates. Figure 4b shows the largest magnitude shift in labeled correspondence
points, when converted to the roadway coordinate system. Such “discontinuities” are due to slight misalignments betweeen
aerial images taken during different passes of the photographing aircraft, and result in small (less than 2 foot) errors in all
cases. While these misalignments could be corrected for by applying a smoothing to the correspondence points labeled within
the aerial imagery, this was ultimately decided against because the smoothing would need to be performed with respect to,
essentially, the roadway coordinate system spline itself, which is in turn a product of the labeled aerial imagery points. This
would produce complex and less well-understood artifacts in the resulting final coordinate system.

(a) (b)

Figure 4. (a) correspondence points labeled in aerial imagery (yellow and black) and in individual camera fields of view (blue) are projected
into the roadway coordinate system. (b) A close-up detailing a type of artifact visible in the coordinate system as a result of misalignment
in the aerial imagery.
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2. Homography Re-estimation Methods
In ideal circumstances homographies can be estimated once (as discussed in the previous section), and used continuously

until some drastic change in the system, (e.g. the roadway section is rebuilt or the lane markings are repainted). Aside from
these rare events there are several other factors which significantly degrade accuracy; long term events can be the replacement
of the camera, inaccuracies in the pan-tilt mechanism during homing, settlement of the foundation or the seasonal temperature
change. Although these can be dealt with occasional re-calibration, the sunflower effect requires constant re-estimation of the
homographies. This effect, the tilting of the metal infrastructure poles due to the differential heating of the sun and shade-
facing sides, can cause significant homography errors (sometimes greater than 10 feet, see Figure 5 for a typical camera
example), both in timescales of hours for the daily warm up and cool down cycle, and also in the timescales of minutes,
caused by the varying cloud coverage (see Figure 6, showing how the positional drift in homographies varies over just 12.5
minutes). A video is included in supplementary material showing the magnitude of drift over the course of a day. The camera
movement can easily be seen by viewing the relation between the lane markers and the ROI rectangle (which maintains
constant pixel coordinates throughout the video). For reference, a typical dash line is 10 feet long.
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Figure 5. Homography goodness of fit and uncorrected drift between reference homography and true scene homography according to two
metrics (Sub Drift and Full Drift) for a single typical camera. Horizontal grey dashes show the two time instances for Figure 6.

(a) (b)

Figure 6. Full drift for the same camera at two time instances. For a given error value X , this indicates that the original reference
homography and the true homography for the scene map the same image coordinate to points in the state plane X feet apart. The westbound
field of view (i.e. the most important portion of the image) is shown as a red polygon.

Note, that tilting not only degrades single-camera accuracy, but due to the multiple pole architecture and the camera FOVs,
homography errors cause significant misalignment in state plane coordinates between poles, resulting in vehicle tracking
fragmentations . (Cameras on the same pole are less susceptible because they are rigidly mounted and roughly ”moving”
together.) Thus, the re-estimation of the homography is necessary on relatively short timescales, or at a minimum on a daily
basis.
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Since manual re-annotation is not possible for continuous operation, a feature point re-identification method is developed,
along with re-estimation methods for a static daily and for a dynamic, time-dependent homography.

All methods and filtering steps are based on the assumption that the image is only slightly distorted from the manually
labeled ground truth. This assumption is necessary, because the homography and the re-discovery relies on the lane markings
which are non-unique and repetitive, thus a significant shift can cause a mis-identification and misalignment. All presented
methods are offline (they utilize both past and future information relative to the specified time instance (i.e. use a non-casual
filter)).

Automated homography generation is divided into two distinct steps. First the feature points are re-discovered and a new
homography is calculated for a single time instance. Second, a refinement step operates on the homographies themselves of
which removes outliers, filters, and aggregates over time. This approach provides robustness for the final estimates based
on the assumption that the re-estimation provides good results in general but are prone to outliers and errors. To comply
to this idea the implemented refinement processes are draconian, and tuned to minimize false positives at the expense of
occasionally removing some true positives. The ”good in general” assumption is empirically tested, by rigorously inspecting
the results and fine tuning the filter parameters of each steps. In case of faulty estimates manual inspection always shows
problems which could cause confusion even for human observers or significant noise and drop in image quality (e.g.: at
dawn).

2.1. Notation

The following notation convention is used throughout the remainder of this Section. Also see Table 2 for a list of utilized
symbols and their meanings.

• Mathcal script (e.g. I) is used for sets of points. Bold Text (e.g. H) is used for vectors and matrices.
• The subscript t denotes a set of points or a homography for a specific time instance (e.g. It)
• No subscript denotes the initial reference points or homography (e.g. I, A, and H)
• The prime symbol denotes rediscovered points (e.g. I ′

t, which corresponds to subset At) , or homographies based on
rediscovered points (e.g.: H′

t)
• a superscript s denotes an image-to-image homography based on SIFT-FLANN matching (e.g. Hs

t )
• A superscript asterisk symbol ∗ denotes a homography estimate calculated with methods presented in the previous

appendix (e.g.: H∗).

• An arrow I H−→ indicates a linear transformation on the point set I according to homography H. (e.g. I ′
t

H′
t−→ =∧ At

denotes that the set I ′
t of rediscovered points at time t, projected from image coordinates to state plane coordinates by

H′
t, estimates the set of corresponding points labeled in state plane coordinates At).

2.2. Homography Generation for a Single Time Instance

This section briefly describes the steps necessary for the homography generation for a single time instance t.

1. Generate a background extracted image to remove the vehicles from the scene. This is implemented as a 1 minute long
averaging of frames, with 50% overlap in time. Note that in case of heavy traffic (essentially for stopped vehicles) this
time period might not be sufficient for complete removal.

2. Compute an initial alignment estimate between the frame and the reference frame, on which the original annotations
were made. This step utilize the SIFT algorithm to find feature points and a FLANN based matcher (both implemented
in OpenCV). Note that the detected features can be anywhere on the image, not necessarily corresponding to semanti-
cally meaningful points (e.g. grass, trees, parking cars outside the road), and most importantly generally not lie on the
plane of the roadway.

3. Based on the SIFT-FLANN generated corresponding points generate an image-to-image homography (Hs
t ).

4. Examine Hs
t : transformation (e.g.: translation, rotation, scale) should be minimal, based on the slight distortion as-

sumption. Otherwise discard the current time instant, because the calculated alignment is likely from erroneously
matched points. No further steps are possible.

5. Binarize the averaged frame via OpenCV’s threshold function [4] and run a contour detection algorithm. This provides
good results because lane markings are high contrast, distinct features.
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Symbol Definition

I labeled image points (in image coordinates, unit: pixels)

It subset of the labeled image points at time t, corresponding to the successfully rediscovered points (It ⊂ I)

I ′
t rediscovered image points (|I ′

t| ≤ |I|)

Is
t labeled image points after perspective transformation, utilizing the SIFT-FLANN matcher, such that I Hs

t−−→ Is
t

I∗
t ”labeled” image points generated such as A

H∗¬
t−−→ I∗

t

A aerial points (in state plane coordinates, unit: feet)

At subset of the aerial points at time t, corresponding to the successfuly rediscovered points (At ⊂ A)

H homography such that I H−→ A

H¬ inverse homography such that A H¬

−−→ I

H′
t homography such that I ′

t

H′
t−→ At

H∗ new static homography estimate by method from Appendix 2.3

H∗
t new dynamic homography estimate for time t by methods from Sections 2.4-2.5

Hs
t projection (image to image) generated with the SIFT-FLANN matcher results

Table 2. Notations for various point sets and homographies utilized in this work.

6. Transform the originally labeled feature points I, i.e. the four corner points of the lane markers, with the calculated
Hs

t (producing Is
t ) and calculate the geometric center for each marker. This provides a seed point for rediscovery.

7. Select contour areas which include a seed point, thus creating a set of candidate for lane marks.

8. For each marker, select the 4 corner points on the corresponding contour that produce the largest area, thus creating a
quadrilateral.

9. Filter the candidates by contour area, contour area to quadrilateral area ratio, ratio of area compared to the labeled
reference area. This step is important to remove candidates which are merged, partially occluded, or otherwise not
rediscovered correctly.

10. Select the proper labels and store the 4 corner points as feature points of each remaining markers. With this step the
rediscovery steps are complete, yielding I ′

t.

11. Run a homography matrix estimator (which utilizes RANSAC) between the rediscovered I ′
t and the corresponding

aerial At points. Remove the feature points which are considered outliers by the algorithm. In the current implemen-
tation these are points of which are further than 2̃ feet on the state plane. The resulting homography for time instance
t is written as H′

t.

The result of the listed process is a set of rediscovered feature points (I ′
t) and a new homography (H′

t) for a given time
instant t. Note that although the steps involve heavy filtering and outlier detection the resulting, a standalone homography
should not be used without further processing for the following reasons:

• The number and positions of the rediscovered lane markings are not guaranteed, thus it is possible to only rediscover
lane markings which lie on the same line, thus providing poor estimates for the perpendicular axis.

• Lane markings ”far” from the camera are hard to properly detect due to their small area and slight camera movements
can cause misidentification.
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Figure 7. An example of SIFT-FLANN based seed points from step 6 (red dots), detected contours (purple outlines) and re-detected dash
corner points (yellow dots) for a 1-minute average frame. Because traffic at this time instance was partially stopped, some vehicle artifacts
are visible in the averaged frame. A few dashes are not successfully rediscovered.

• The RANSAC based homography estimator does not guarantee that the selected points are proper. In extreme cases
it can select an erroneous subset and fit a good homography to it. As discussed previously, the lane markings are
non-unique and repetitive: usually there are multiple subsets of points with nearly identical relative arrangement.

2.3. Static Homography Generation

To counter for the long term homography errors and somewhat compensate for the sunflower effect a single homography
can be generated for a given time interval, e.g.: the length of the recording or for the desired time range. This method has the
advantage of time-invariance (simplicity) and can utilize all the instantaneous estimates over the specified window, resulting
in ample redundancy for outlier removal. The method includes two steps:

1. In the preparation phase the outliers are removed, i.e. the homography estimates of which significantly differ from the
others. The current implementations considers a homography an outlier if any of its component (in the 3x3 matrix)
deviates more than 30% from the arithmetic mean of all estimates. Note that this process is iterative.

2. The main step is the averaging, i.e. calculating the arithmetic mean for each matrix component to produce H∗.

2.4. Dynamic Homography Generation

To counter for both long and short term homography problems a dynamic, time dependent method is proposed. This
solution is capable of modeling short-term camera motion (e.g. from the sunflower effect), but is less trivial implement and
use compared to the static version because it requires modifying the homography as a function of time.

The underlying idea of this method is the ”smoothing” of the original estimates, based on the temporally nearby values.
Note that this is not straightforward because estimates are not necessarily available at all time instances, e.g.: in case of
heavy traffic the occlusion prevents homography estimation, similarly at the beginning and at the end of the recording there
is no preceding and subsequent information available. (This is especially problematic at dawn and dusk where the even the
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recorded images are noisy and blurred thus making feature rediscovery hard or even impossible.) Thus a method is necessary
of which is capable to adapt to these situations. An important and necessary property of a good dynamic homography
is that it provides ”smooth” variability over time, preventing discontinuities in positional data (which could in turn cause
fragmentations during object tracking.)

The proposed solution includes three steps:

1. In the preparation phase the outliers are removed. This step is exactly the same as in the static case.

2. A ”window size” parameter is computed, based on the available number of homography estimates in a specified tem-
poral neighbourhood around the given time instance. This step ensures that in case of missing estimates the window
size is larger, thus accommodating more data points.

3. The final step is the ”smoothing” of each homography matrix component, where a Gaussian kernel function is used
over time. The shape of the function, or more precisely the variance is determined by the previous step.

Note that this method can provide a homography estimate H∗
t at any time instance, not just when instantaneous estimates

are available. In our implementation a new estimate is generated at 10 second intervals.

2.5. SIFT-FLANN-based homography generation (existing)

No lane marking rediscovery is performed. Instead, the set of shifted points (Is
t ) generated from the original labels (I) is

directly used from Appendix 2.2 step 6 and above to fit a homography estimate H∗
t for time t i.e. I Hs

t−−→ Is
t

H∗
t−−→ A.
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3. Homography Error Metrics
Next, we turn to defining metrics for assessing the effectiveness and accuracy of the proposed point rediscovery and

homography re-estimation metrics. This appendix provides an overview of the possible metrics and their properties.

3.1. Notation

In addition to the notation defined in the previous section, the comparison operator E is defined as a function of two sets of
points (B, C ⊂ R2). The operator calculates the point-wise L2-norm between the common subset of points shared by B and
C , (i.e. the distances between two points which correspond to the same feature), and produces a set of values. The resulting
set can be used to calculate aggregate metrics, such as mean, maximum, and standard deviation of error.

E(B, C) = {||bi, ci||2, ..., ||bn, cn||2} ∀i s.t. bi ∈ B, ci ∈ C, bi =∧ ci (14)

3.2. Reference Metrics

Metrics listed in this appendix are computed by comparing the original reference labels (I and I) to rediscovered points
(I ′

t). In some cases the same set of points is transformed with the original reference homography (H or H¬) and the instanta-
neous homography estimate H′

t. They measure i.) the quality of the rediscovery and instantaneous homography re-estimation
process, and ii.) the movement of the cameras.

Most metrics presented here can be calculated in both image and state plane coordinate systems; thus we present them in
pairs. The resulting error values have units of pixels or distance (feet), respectively. In practical evaluations we utilize the
state plane distance (units of feet) as it is invariant to the image resolution and FOV, thus comparable across cameras. As in
Appendix 1, we use a superscript (im) or (st) to denote the coordinate system for each metric.

• Sub Drift I: This metric compares a subset of the originally labeled image points to the rediscovered points. The
resulting distances can be interpreted as the drift caused by the camera movement. Note that in case of perfect alignment
the maximum error is zero.

SubDriftI(im) = E(It, I ′
t) (15)

SubDriftI(st) = E(It
H−→, I ′

t
H−→) (16)

• Sub Drift II (not used): This metric compares a subset of the originally labeled aerial points to the rediscovered
points. The resulting distances are a combined error of the drift caused by the camera movement and the homography
fitness error. Thus even in case of no movement the error is non-zero, as the homography is not a perfectly fit mapping
of I to A.

SubDriftII(im) = E(A′
t

H¬

−−→, I ′
t) (17)

SubDriftII(st) = E(I ′
t

H−→,At) (18)

• Full Drift: This metric compares the full set of the originally labeled image or aerial points transformed by the
reference and the re-estimated homography. The resulting distances can be interpreted as drift caused by the camera
movement. In the case of no camera movement, the error is zero (except for possible stochasticity in the optimal
homography H ′

t selected by the RANSAC algorithm utilized.)

FullDrift(im) = E(A H¬

−−→,A H′¬
t−−→) (19)

FullDrift(st) = E(I H−→, I H′
t−→) (20)

• Sub Fitness: This metric shows the fitness of the estimated homography, utilizing the rediscovered points and a
matching subset of aerial points. This error is caused by a combination of e.g.: inaccurate feature point rediscovery,
lens distortion, non flat roadway.

Fitness(im) = E(At
H′¬

t−−→, I ′
t) (21)

Fitness(st) = E(I ′
t

H′
t−→,At) (22)
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3.3. Homography Re-estimation Metrics

Metrics listed here are derived from the metrics introduced at the previous section. Substituting the reference labels and
homographies with the re-estimated homographies and points sets derived from them. The interpretation and purpose of
these metrics are to qualify how good are the new estimations; i.e. a perfect homography provides a perfect alignment to the
detections.

• Sub Drift: This metric compares a subset of points generated with the re-estimated homography (from the originally
labeled points) to the rediscovered points. The resulting distances can be interpreted as a combined error of the re-
estimation and the homography fitness error. Therefore even in case of a perfectly aligned homography the error is
non-zero. Note that, because the new subset of points are generated from the reference labeled points this metric
essentially merge Sub Drift I and II presented in the previous section.

SubDrift(im) = E(I∗
t , I ′

t) =⇒ E(At
H∗¬

t−−→, I ′
t) (23)

SubDrift(st) = E(I∗
t

H∗
t−−→, I ′

t

H∗
t−−→) =⇒ E(A H∗¬

t−−→ H∗
t−−→, I ′

t

H∗
t−−→) =⇒ E(At, I ′

t

H∗
t−−→) (24)

• Full Drift: This metric compares the full set of the originally labeled image or aerial points transformed by the the
re-estimated and by the instantaneous homography. In effect, these original labeled points are chosen as “proxy points”
for the real locations of the correspondence points in the image as they are a full set known to lie near the true locations.
The resulting distances can be interpreted as the error of the homography re-estimation process. Note that in case of a
perfect alignment the error is zero.

FullDrift(im) = E(A H∗¬
t−−→,A H′¬

t−−→) (25)

FullDrift(st) = E(I H∗
t−−→, I H′

t−→) (26)

• Fitness: Since the fitness metrics does not depend on the re-estimated homography, they are equivalent to the ones
discussed in the previous section.

The homography re-estimation performance can be measured by the Full and Sub Drift metrics, but both have caveats to
consider: Sub Drift is a better measure of the real magnitude of the error, because it incorporates inaccuracies of both the
homography and the homography fitness, e.g. errors caused by intrinsic camera problems and the non-flat roadway. On the
other hand the Sub Drift metric only includes feature points which are re-detected, thus hard to detect points further from the
pole are often missing from the set. This is crucial because the perspective those ”far” points account for larger state plane
errors than the more easily detectable closer ones. The combined effect of these that the Sub Drift is better in the assessment
of the expected minimal error, this is not the case for the maximum. Also worth noting is that Sub Drift does not explictly
rely on H ′

t being well-fit, so produces a reliable estimate of error even when the fitting of H ′
t fails (though in practice this

usually indicates poor point rediscovery).
The Full Drift metric is useful to assess the performance of the homography re-estimation itself, because in case of perfect

alignment the error is reduced to zero. In opposite to the Sub Drift this, metric includes all labeled points, some of which are
actually outside the processed ROI, thus resulting in an apparently larger maximum error than during vehicle detection.

Based on these considerations, we select Full Drift (Equation 20) as our primary metric and use it to report the error for
each method utilized as equation 2 the main text. We also utilize Sub Fitness (Equation 22) as a baseline measure for the
error floor of each fit homography (fitness in equation (1) of the main text).

3.4. Additional Homography Metric Figures

Figure 8 shows the different state-plane error metrics for a camera with a long field of view. P05C06 is chosen as it clearly
illustrates both long and short-term drift in the homography, as well as the relations between the different metrics: On Figure
8a the homography Fittness is shown, representing the minimum achievable accuracy for the vehicle detection. On Figure 8b
the SubDriftI error is slightly higher than FullDrift shown on Figure 8c, because it contains both the fitness and homography
error. In this case, the maximum SubDriftI values are higher than the maximum FullDrift values because the rediscovery rate
for the feature points is ∼80% for this particular case (relatively high), thus distant points are also likely included. If the drift
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were more extreme, the most distant correspondence points might not be successfully rediscovered, and the overall reported
SubDriftI error may be driven down as a result. This dependence on the number of rediscovered points is one reason why
FullDrift is preferred to SubDrift in this work for comparing homography re-estimation performance.
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Figure 8. (Repeated from Section 2.) Goodness of fit and uncorrected drift between reference homography and true scene homography
according to two metrics (Sub Drift and Full Drift) for a single typical camera. Horizontal grey dashes show the two time instances for
Figure 6.

Figure 9, 10 shows the mean FullDrift and SubDrift calculated and averaged over the time of the recording, for all cameras
in the system, sorted by magnitude, for each direction of roadway travel. Note that not all cameras have fields of view defined
for both sides of the roadway (hence there are more total westbound fields of view than eastbound fields of view). The mean
SubDrift is Lower than the mean FullDrift over all cameras, and the maximum mean SubDrift (over all correspondence points
and times) is lower than for FullDrift. However as seen in Figure 8a, for some time instances the maximum SubDrift can be
higher than the maximum FullDrift.
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Figure 9. Mean averaged SubDrift and FullDrift calculated for all westbound cameras in the system, sorted by error magnitude.

The effectiveness of the homography re-estimation methods is illustrated on Figure 11, which shows the additional error
above the error floor, utilizing the FullDrift metric, for two cameras. The reference (blue) indicates the resulting error without
any mitigation, showing both long term (high mean) and short term (high variance) error. The SIFT-FLANN method (orange)
illustrates the performance of an optical flow based ”camera stabilization” solution. The static, all-day average method (green)
removes the long term error, although it is mostly unable to remove the error caused by the sunflower effect. Finally since
the dynamic homography (red) utilizes nearby (temporal) homography estimations for a given time instance, it can cope with
short-term fluctuations. Note that in most cases the all-day average is superior to the SIFT-FLANN method, although there
can be time instances where the former can produce better results. Figure 11 also illustrates, that long field of view cameras
(e.g. P05C06) are more sensitive to camera movement, compared to mainly downwards-facing cameras (e.g. P05C04), thus
the error caused by drift is more pronounced for them.
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Figure 10. Mean averaged SubDrift and FullDrift calculated for all eastbound cameras in the system, sorted by error magnitude.
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Figure 11. Error dynamics for two cameras over time with each homography re-estimation methods. Long field of view cameras e.g. 11a
have more pronounced errors over down-looking cameras, e.g. 11b.

Lastly, figure 12 compares the remaining mean average SubDrift and FullDrift errors for each camera after (black) SIFT-
FLANN feature-matching, (orange) one-day best fit homography re-estimation, and (red) dynamic homography re-estimation
methods relative to original reference homography baseline (blue). The overall trends and relative performance amongst
methods is unchanged; in most cases the SIFT-FLANN baseline outperforms the uncorrected reference homography, the
all-day average outperforms SIFT-FLANN, and the dynamic method outperforms the all-day average.
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Figure 12. Remaining SubDrift and FullDrift errors for each camera after (black) SIFT-FLANN feature-matching, (orange) one-day best
fit homography re-estimation, and (red) dynamic homography re-estimation methods relative to orignal reference homography baseline
(blue). Cameras are grouped by position on pole (see Figure 2 in main text.) and by side of roadway (westbound homographies on top,
eastbound on bottom).)

4. Additional GPS Trajectory Plots
Figure 13 shows plots for additional GPS tracks through the video scene. Manually annotated object positions (circles)

and GPS positions (lines) for are shown for the overall scene, divided by westbound (top left) and eastbound (bottom left)
direction of travel. (right) x-position relative to the corrected GPS track (top) and absolute y-position (bottom) are plotted
for the highlighted GPS track. It can be seen that a.) the corrected GPS trajectories align more closely with object detections
(black dots) and b.) there is significant deviation between the corrected and uncorrected GPS trajectories. Note that especially
the Y-coordinate error in the uncorrected trajectories varies in character across different GPS trajectories.
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Figure 13. Plots for 4 individual GPS trajectories. In each sub-figure, (top left) shows westbound X-position and (bottom left) shows
eastbound X-position for the whole scene duration. (top right) shows nearby (in relative X-coordinates) and (bottom right) shows nearby
(in Y-coordinates) detections, manual annotations, and uncorrected GPS trajectory, relative to the corrected GPS trajectory.
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5. Object Detector
5.1. 3D Bounding Box Parameterization

Object detections are produced by a Retinanet object detector with Resnet-50 FPN backbone [12]. We extend the first
convolutional layer of this network to allow two input frames (the current and a rolling average frame). This network has
two output heads: a classification head and a regression head, each of which outputs a set of outputs per anchor box. The
shape of the classification head output C is [n, c] where n is the number of anchor boxes in the network and c is the number
of classes. For an anchor box i, the final output object class and object confidence are taken as:

classi = argmax
c

(C[i, :]) (27)

confidencei = max(C[i, :]) (28)

The shape of the regression head output R is [n, 8]. Let Ai parameterize a single anchor box i according to:

A[i, :] = [xa, ya, wa, ha] (29)

denoting the x-coordinate,y-coordinate,width and height of the anchor box, respectively. The regression output corresponding
to that anchor box R[i, :] parameterizes a rectangular prism (ignoring the effects of perspective foreshortening) according to:

R[i, :] = [xc, yc, xl, yl, xw, yw, xh, yh] (30)

where (xc,yc) indicates the center of the rectangular prism relative to the anchor box top left corner, xl and yl indicate the
x-pixel and y-pixel components of the rectangular prism’s length, xw and yw indicate the x-pixel and y-pixel components of
the rectangular prism’s width, and xh and yh indicate the x-pixel and y-pixel components of the rectangular prism’s height.
All components (e.g. xl,yl) are relative to the anchor box dimensions (in this case wa and ha). By convention, each dimension
is directional and is measured relative to the rear bottom left corner. Figure 14 provides a visual overview of each component.

The (X,Y) pixel coordinates for back bottom left coordinate (xrbl, yrbl within the overall image can then be written as:

xbbl = xa + (xc − xl/2− xw/2 + xh/2) ∗ wa (31)
ybbl = ya + (yc − yl/2− yw/2 + yh/2) ∗ ha

Figure 14. Bounding box rectangular prism parameterization. Anchor box (purple) reference coordinate system denoted as (x,y) and
global frame (blue) reference coordinate system denoted as (X,Y). Angle of h is exaggerated to show sub-components xh and yh.
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The 7 other corner coordinates can be similarly written. The resulting rectangular prism can then be converted into
state plane and roadway coordinates via the methods discussed in Appendix 1. Readers familiar with 3D detection in the
autonomous vehicle context will likely question the use of 3D bounding boxes produced explicitly in state space, as in
e.g. [9, 14]. In these contexts, a single camera is statically mapped to the world coordinate plane (i.e. the same pixel within
an image always corresponds to the same point on the ground plane in world space). This is not the case in our application,
in which a single CNN is desired to produce object detections for frames from all 234 cameras. Thus, a viewpoint agnostic
anchor box / bounding box formulation such as the one used here is required. We also consider the direct regression of 3D
bounding box corner coordinates as in [11] but empirically this results in poor performance.

5.2. Training

We train the above object detector on the I24-3D dataset [6]. We use the following loss formulation:

Loss = Loss2D + β × Loss3D + Losscls + γLossvp (32)

where:

• Loss2D is intersection-over-union loss [13] for the minimum enclosing 2D bounding boxes for each of the predicted
and target bounding box

• Loss3D is MSE loss computed between the target and predicted bounding box corners

• Losscls is classification focal loss [12]

• β is a weighting coefficient, here set to 2.

• γ is a weighting coefficient, here set to 1/3

and Lossvp is a term designed to enforce the length, width, and height components of the predicted rectangular prism
to align closely to the corresponding vanishing points by penalizing the angle between these vectors and the vanishing
point directions (relative to the center of the predicted bounding box). Succinctly, Lossvp is 0 when each bounding box
is perfectly axis-aligned relative to the vanishing points, and is 1 when the axes of the bounding box are perfectly
orthogonal to their respective vanishing points. In this way, the training enforces the CNN to utilize visual cues from the
image and align bounding boxes along these visual axes.

Lossvp =1/2− αl((yl(yvpl − yc)) + xl(xvpl − xc))/(2(xvpl − xc)(yvpl − yc)ylxl) + (33)
1/2− αw((yw(yvpw − yc)) + xw(xvpw − xc))/(2(xvpw − xc)(yvpw − yc)ywxw) +

1/2− αh((yh(yvph − yc)) + xh(xvph − xc))/(2(xvph − xc)(yvph − yc)yhxh)

where (xvpl,yvpl) is the vanishing point, in pixel coordinates, aligned with the roadway direction of travel, (xvpw,yvpw) is
the vanishing point, in pixel coordinates, perpendicular with the roadway direction of travel, and (xvph,yvph) is the vanishing
point, in pixel coordinates for vertically aligned lines within the frame, αl is -1 if the rear of the bounding box is closer
to (xvpl,yvpl) than the front of the bounding box and 1 otherwise, αw is -1 if the left side of bounding box is closer to
(xvpw,yvpw) than the right side of the bounding box and 1 otherwise, and αh is -1 if the bottom of the bounding box is closer
to (xvph,yvph) than the front of the bounding box and 1 otherwise.

Figures 15 and 16 show the resulting detection set in roadway coordinates. Each diagram plots roadway X-position versus
time for all detections on the given roadway direction. In some cases, more than one detection may be mapped to a single
pixel because they correspond to two detections occupying nearly the same X-position at the same time, in different lateral
(lane) positions.In these figures, horizontal bands without detections correspond either to missing camera poles (see Appendix
8 or overpasses. Full-resolution images are included in supplementary material as separate files.
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Figure 15. Longitudinal (X) position versus time for all detections on the westbound side. Each colored pixel (a total of 123,768,540
though with some overlaps for vehicles in different lanes but the same X position at the same time) represents a detected vehicle in a
particular location and time. (A full resolution image is included in supplementary files, with scale 1 pixel = 2 feet and 0.16 sec).

Figure 16. Longitudinal (X) position versus time for all detections on the eastbound side. Each colored pixel (a total of 123,768,540 though
with some overlaps for vehicles in different lanes but the same X position at the same time) represents a detected vehicle in a particular
location and time. (A full resolution image is included in supplementary files, with scale 1 pixel = 2 feet and 0.16 sec).
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6. Experimental Details
6.1. Evaluation Protocol

Each object tracker is run using the detection set from Appendix 5. GPS trajectories and detections from each camera
are obtained at slightly different times. To account for this, tracking evaluation is performed at fixed 0.1 second intervals,
and each GPS trajectory and object tracklet position is linearly interpolated at each evaluation time. GPS trajectories extend
somewhat outside of the temporal duration for which detections are available. Evaluation is performed only over the temporal
range for which both GPS trajectories and detections exist. Moreover, each GPS trajectory is clipped in the X-range [0, 23000]
such that the trajectory is always visible within the field of view of the overall camera network. Evaluation is performed as
in [1]. For all metrics other than HOTA metrics, a lax IOU of 0.1 is required for an object tracklet and GPS trajectory to be
matched, and matching is performed with the Hungarian Algorithm for bipartite matching [10]. For each object tracklet, we
use the median reported dimension (l,w, and h, in feet) over all reported tracklet dimension measurements.

6.2. Parameter Settings

Table 3 lists relevant parameter settings for each implemented algorithm. Kalman filter parameters were empirically
fine-tuned using the I24-3D dataset [6].

Algorithm Parameter Value Description

ALL tmax 2 Maximum time (sec) between detections before track is terminated
tmin 2 Minimum track length (sec)
feval 10 Evaluation time step (Hz)

SORT [2] σhigh 0.5 Required object confidence to be included in detection set
ϕnms 0.1 Non-maximal suppression IOU threshold
dmax 10 Maximum allowable distance for a match (ft)
ftrack 10 Tracking time step (Hz)

IOUT [3] σhigh 0.5 Required object confidence to be included in detection set
ϕnms 0.1 Non-maximal suppression IOU threshold
ϕmin 0.1 Minimum IOU for a match
ftrack 15 Tracking time step (Hz)

KIOU [5] σhigh 0.5 Required object confidence to be included in detection set
ϕnms 0.1 Non-maximal suppression IOU threshold
ϕmin 0.1 Minimum IOU for a match
ftrack 10 Tracking time step (Hz)

ByteTrack (L2) [17] σhigh 0.01 Required object confidence to be included in detection set
ϕnms 0.1 Non-maximal suppression IOU threshold
dmax 10 Maximum allowable distance for a match (ft)
τhigh 0.4 Required confidence to be included in first matching step
ftrack 10 Tracking time step (Hz)

ByteTrack (IOU) [17] σhigh 0.01 Required object confidence to be included in detection set
ϕnms 0.1 Non-maximal suppression IOU threshold
ϕmin 0.1 Minimum IOU for a match
τhigh 0.4 Required confidence to be included in first matching step
ftrack 10 Tracking time step (Hz)

Oracle ϕmin 0.1 Minimum IOU for a match
ftrack 10 Tracking time step (Hz)

Table 3. Caption
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7. Treatment of Personally Identifiable Information
As stated in [7], the primary purpose of the I-24 system is not to produce video data, but rather is to produce vehicle

trajectory data. The data management plan for the system states that in general, video data is not released to the public or
stored for long periods of time, but occasionally video data may be released to enable work on training, testing, and validation
of trajectory generation algorithms. Thus, the video released in this work represents an edge case for the system,

Nevertheless, the release of video data (or any data with individuals represented) carries with it the risk of releasing
personally identifiable information (PII) on the included individuals. In this work we make every effort to prevent the leakage
of PII to the public, and furthermore make it infeasible to automatically extract PII such that doing so becomes extremely
onerous to potential bad actors. A three-tiered approach is used: 1.) We release, more or less, a random hour of data, such
that the potential for capturing a discrete event of interest to a third party is near zero. 2.) We automatically redact all license
plate information from all visible vehicles. 3.) We manually redact any regions containing private property or visible people.

Even in un-redacted video data, license plates are in almost all cases impossible to read. Figure 17 provides a typical
camera field of view, with the license plate only about 15 pixels wide and subject to significant blurring from vehicle motion.
(The vehicle used in this image is part of the GPS instrumented vehicle fleet and does not belong to an individual). Never-
theless, we run an off-the-shelf license plate redaction algorithm [15] on all frames and cover all detected license plates with
a black rectangle.

Figure 17. Example license plate from this dataset before redaction. License plate information is unrecoverable; for reference, the orange
numbers on the rear window of the vehicle are about 5 times as large as license plate text and are barely discernible. (The pictured vehicle
is part of the GPS instrumented vehicle fleet and does not belong to an individual).

We then manually inspect each video and redact the following sets of information. These areas are blurred in the released
videos. Polygons defining the redacted regions are also released such that data users can replace these pixel values as desired
for computer vision applications. Figure 18 shows an example of redacted regions.

• All visible people

• All private property

• Any stopped law enforcement vehicle (we leave ∼ 1 sec of the stopped vehicle visible to allow for graceful handling
of these vehicles by tracking algorithms.
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Figure 18. Example redacted regions (red outline, blurred) for one camera field of view .

8. Known Data Artifacts and Anomalies
Here, we report a list of known anomalies and artifacts in the data as of submission time:

• Visible in some cameras on poles 3 and 4, there is a region that is blacked out in all frames and camera fields of view.
This region corresponds to a private residence. Different from other redaction areas in this dataset, a virtual mask is
applied to this region in all cameras in which it is visible, such that no visual informatiom from this region is ever
recorded. Other regions are redacted after recording.

• All cameras from Pole 25 are missing; this pole was struck by a vehicle a few days prior to the recording day and could
not be restored in time.

• Homographies on the eastbound roadway side are not defined for cameras on poles 1-7. Construction work required
that temporary solid lane markings be painted, for which i.) corner points were not uniquely distinguishable and ii.) no
matching aerial imagery exists due to the short term nature of the construction work.

• Reference homographies for cameras on poles 1 and 2 are defined, but homographies are not re-estimated for these
cameras. The lane markings were altered between the reference homography day and the recording day meaning that
SIFT-FLANN matching and lane marking re-detection fail.

• Camera P22C04 has a black ring visible on the left portion of the frame due to a mechanical misalignment of the
camera lens and body.

• Occasionally, GPS trajectories have missing recordings for time periods on the order of ∼ 1 sec. The onboard sensor
filtering attempts to compensate for this missing data, producing “sawtooth” artifacts in the trajectory. Figure 19 shows
an example. The majority of these artifacts were removed during data refinement, but due some artifacts may still
remain.
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Figure 19. “Sawtooth” artifact in uncorrected GPS trajectories (lines). Circles depict corresponding manually annotated vehicle positions.
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