
A. Ablations
Architecture for Visual Adapter Layer. In the main pa-
per, we use a linear layer for adapting visual features. To
ablate the varying depth of Hθ , we increase the number of
layers (with ReLU activations in between). Table 4 shows
the results on the ImageNet validation set using CLIP RN-
50 on 16-shot classification.

Weighting Parameter α for different datasets. DAC
improves the classification capability of both inter-modal
and intra-modal classifiers. We use a scalar α to balance
the contributions of each classifier towards the final accu-
racy. The value for α is selected based on the performance
on the validation sets. A similar strategy was employed by
Tip-Adapter [53]. However, in Tip-Adapter it is used to de-
termine how much residual information should flow from
intra-modal classifier to update the inter-modal predictions.
To find the optimal value, we perform a grid search with a
step size of 0.01, a search range in [0.1, 10], and the num-
ber of search steps being 10000. In this section, we present
different values of α used to compute the final test perfor-
mances of each dataset. In Fig. 8, we show how varying α
influences the performance on 16-shot ImageNet classifica-
tion. Table 5 lists our optimal values for α for all datasets
(both DAC-V and DAC-VT). Since α is multiplied with the
intra-modal logits, it can be seen that DAC-V consumes
more information from the intra-modal classifier. Remem-
ber that in DAC-V, we only optimize the visual representa-
tions of CLIP without optimizing it for the upstream few-
shot classification task. This further highlights the bene-
fits of having better intra-modal representations in few-shot
adaptation setting.
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Figure 8. Ablating the α parameter for ImageNet using CLIP
ResNet50.

B. Detailed Analysis on Error Inconsistencies
We analyze the error inconsistencies observed across

various datasets in Fig. 9. This plot complements our
analysis in Sec. 5 about the role of inter- and intra-modal
classifiers in an ensembled setting, and further illustrates
how DAC-VT reduces inconsistencies between intra and
inter-modal classifiers. The consensus between the DAC-
VT’s sub-classifiers is higher for some datasets (e.g., Flow-
ers102, Caltech101), however, the inconsistencies for cer-
tain datasets (e.g., FGVCAircraft) are still high.

C. A Case for Aligning Textual Representa-
tions in Target Domain

We further elaborate on why it is important to align tex-
tual features on each downstream task. Previous work [35]
has shown that CLIP’s zero-shot transfer is vulnerable to
expansion of downstream vocabulary used for class labels.
This becomes even more important when the visual con-
cepts in the target domain get associated with different class
labels, presented at different granularities. Figure 10 shows
an example (taken from [40]) where multiple, different la-
bels from ImageNet can be used to describe the same im-
age. Such cases are particularly difficult for vision-language

Structure of Hθ DAC-V DAC-VT

Linear Layer 64.89 66.61
2 Layer MLP 64.452 65.582
3 Layer MLP 64.08 65.274
4 Layer MLP 64.01 65.064

Table 4. Ablating structure of adapter layer Hθ

Datasets DAC-V α DAC-VT α

UCF-101 3.78 1.16
Caltech101 2.40 1.33
ImageNet 8.32 3.31
SUN397 5.95 1.39

FGVCAircraft 8.2 6.91
StanfordCars 6.50 2.42
Flowers102 8.17 3.43

Food101 1.17 1.05
OxfordPets 1.07 0.73

DTD 3.05 1.11
EuroSAT 5.17 0.76

Table 5. Details of α used to weigh intra and inter-modal classi-
fiers for different datasets in DAC-V and DAC-VT. In DAC-V the
contribution from intra-modal features is weighted more which in-
dicates that the adapted visual cache contains reliable information
to update CLIP’s inter-modal knowledge.



models to generalize to in zero-shot manner, unless more
context is given by either prompts or some domain-specific
training data.

Note that the adaptation of textual representations intro-
duced in cf . 4.2 aims to caters for such confusing examples
as it modulates the overall textual embedding (including the
class name). Such an optimization allows the textual cache
to adapt the class description according to the visual con-
cepts defined by a few observed images.

Few-shots 1 2 4 8 16

Linear-probe CLIP 22.17 31.98 41.20 49.52 56.13
CoOp 57.15 57.81 59.99 61.56 62.95
CLIP-Adapter 61.20 61.52 61.84 62.68 63.59
Tip-Adapter 60.70 60.92 60.95 61.48 62.00
Tip-Adapter-F 61.19 61.75 62.48 63.84 65.47

DAC-V 60.71 61.48 61.87 63.38 64.89
DAC-VT 61.32 62.39 63.11 64.78 66.61

Table 6. Top1 accuracy of different methods on ImageNet at dif-
ferent shots.
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Figure 9. Comparative analysis of error inconsistencies be-
tween intra-modal and inter-modal classifiers of CLIP and
DAC-VT on 10 different datasets (sorted by DAC-VT’s perfor-
mance). We observe that DAC-VT significantly reduces the error
inconsistencies, however, the performance gap reduces on certain
datasets such Food101 and FGVCAircrafts.

(a) stage (b) missile

Figure 10. Examples of confusing labels in ImageNet [40]. The
labels above appear to correctly describe the visual concepts, how-
ever, ImageNet assigns acoustic_guitar and projectile labels to the
images, respectively.

D. Understanding Inter-Modal and Intra-
Modal Representations Alignment

In this section, we delve into understanding how DAC-
VT modulates the interactions between inter-modal and
intra-modal representations. We look at them from the per-
spective of cone effects occurrences in representations dis-
tances that’s been extensively studied in [24]. In Fig. 11, we
showcase the range of cosine similarities scores obtained
by computing similarities between inter-modal and intra-
modal representations. It can be seen that even after up-
dating textual representations, DAC-VT maintains the same
range of inter-modal similarity between images and text as
in CLIP. The bigger shift is observed in intra-modal align-
ment where the visual representations tuned with DAC have
a different support in comparison to TIP and CLIP based
intra-modal alignments. We conjecture that this shift hap-
pens because the supervised contrastive objective used to
tune visual representations introduce a different learning in-
ductive bias than what was used to aligning image-text rep-
resentations.
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Figure 11. Pictorial depiction of modality gaps between intra-
modal and inter-modal representations of different methods
(illustrated by cosine similarities). It can be seen that the DAC-
VT’s and CLIP image-text similarities remain within the same
range.


