
SUPPLEMENTARY MATERIAL:
What’s in the Flow? Exploiting Temporal Motion Cues for Unsupervised Generic

Event Boundary Detection

Sourabh Vasant Gothe , Vibhav Agarwal , Sourav Ghosh , Jayesh Rajkumar Vachhani ,
Pranay Kashyap, Barath Raj Kandur Raja

Samsung R&D Institute Bangalore, India
{sourab.gothe, vibhav.a, sourav.ghosh, jay.vachhani, kashyap.p, barathraj.kr} @samsung.com

A. Precision, Recall and F1

Tables 2 and 3 show precision, recall and F1 scores
at different Relative Distance (Rel.Dis.) thresholds for
FlowGEBD (PT, FN and Ensembled). Following the bench-
mark [2], we mainly consider 0.05 threshold for our analy-
sis since boundaries with high Rel.Dis. is less relevant for
short videos.

Table 2 shows that the precision values for FN and En-
sembled methods are 0.6507 and 0.6289, respectively. In
Ensembled method, we comprehend contiguous boundaries
to belong to one cluster. For example, if boundary times-
tamps obtained from PT and FN (without temporal refine-
ment) are: {1.25, 1.5, 1.75} and {2.0, 2.25, 2.50, 2.75}, re-
spectively, then output for Ensembled approach would be a
single median boundary {2.0}. Therefore, a marginal drop
in precision is an outcome of possible decrease in true pos-
itives. However, recall boosts significantly to 0.8237. Fig.
1 depicts that 8% of the boundary causes are characterized
by multiple coupled scenarios (example: change of subject
+ action). Therefore, by ensembling PT and FN methods,
we remove some unnecessary boundaries and thus convert
the false negatives to true positives.

The TAPOS dataset [1] contains Olympics sports videos
with 21 actions. Both PT and FN yield at par performance
on all three metrics, as illustrated in Table 3. This demon-
strates the effectiveness of our proposed algorithms, since
both PT and FN are able to detect action changes accu-
rately. Additionally, 43% videos in TAPOS validation set
have more than one boundary. Hence, we are able to ap-
propriately detect uncommon events and improve true pos-
itives. Our interpretation is validated by the higher F1, pre-
cision and recall scores for the Ensembled method.

B. Latency Analysis of FlowGEBD

We sample 100 videos from the Kinetics-GEBD [2] val-
idation dataset to verify the complexity and measure the in-

Figure 1. Boundary events distribution on Kinetics-GEBD valida-
tion set

ference time. In Table 1, the w (width), h (height) values
are increased linearly by a factor of two. As anticipated, the
inference time increases by 4×.

C. Qualitative Results
The qualitative results on Kinetics-GEBD are shown

in Fig. 2. This illustrative representation provides a clear
and comprehensive depiction of FlowGEBD’s accuracy in
identifying event boundaries across different scenarios. The
third row in the Fig. 2, vividly highlights the effectiveness
of patchwise processing.

Frame Resolution Average inference time per frame (ms)
Pixel Tracking Flow Normalization Ensembled

160× 160 2.266 6.428 6.503
320× 320 7.744 20.236 20.311
640× 640 16.525 69.675 69.75

Table 1. Latency of FlowGEBD with respect to frame resolution
(measured on Edge Device, CPU)

1



Metric Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

Precision
PT 0.6437 0.7593 0.7828 0.7929 0.7981 0.8006 0.8025 0.8041 0.8053 0.8069 0.7796
FN 0.6507 0.7846 0.8178 0.8340 0.8411 0.8453 0.8479 0.8496 0.8514 0.8528 0.8175

Ensembled 0.6289 0.7452 0.7684 0.7770 0.7811 0.7831 0.7843 0.7855 0.7863 0.7876 0.7627

Recall
PT 0.7724 0.8887 0.9145 0.9266 0.9326 0.9366 0.9393 0.9407 0.9426 0.9442 0.9138
FN 0.7361 0.8729 0.9072 0.9242 0.9328 0.9376 0.9410 0.9433 0.9455 0.9469 0.9087

Ensembled 0.8237 0.9315 0.9508 0.9586 0.9626 0.9646 0.9657 0.9666 0.9673 0.9683 0.9460

F1 Score
PT 0.7022 0.8189 0.8435 0.8546 0.8601 0.8633 0.8655 0.8671 0.8685 0.8702 0.8414
FN 0.6908 0.8264 0.8602 0.8767 0.8846 0.8891 0.8920 0.8940 0.8960 0.8974 0.8607

Ensembled 0.7133 0.8280 0.8499 0.8583 0.8624 0.8644 0.8656 0.8667 0.8675 0.8686 0.8445

Table 2. Precision, Recall and F1 results on Kinetics-GEBD validation set with different Rel.Dis. thresholds. (Detailed version of Table 1
from main paper)

Metric Rel.Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.30 0.35 0.4 0.45 0.5 Avg

Precision
PT 0.3141 0.4327 0.4974 0.5478 0.5793 0.5991 0.6132 0.6221 0.6318 0.6373 0.5475
FN 0.3053 0.4299 0.4958 0.5468 0.5808 0.5983 0.6136 0.6232 0.6310 0.6378 0.5463

Ensembled 0.3195 0.4279 0.4852 0.5323 0.5614 0.5774 0.5924 0.5999 0.6062 0.6116 0.5314

Recall
PT 0.4084 0.5627 0.6467 0.7123 0.7533 0.7790 0.7973 0.8089 0.8214 0.8287 0.7119
FN 0.3986 0.5612 0.6472 0.7137 0.7581 0.7810 0.8010 0.8135 0.8236 0.8325 0.7130

Ensembled 0.4525 0.6060 0.6872 0.7540 0.7952 0.8178 0.8390 0.8496 0.8586 0.8663 0.7526

F1 Score
PT 0.3551 0.4892 0.5623 0.6193 0.6549 0.6774 0.6933 0.7033 0.7142 0.7205 0.6190
FN 0.3458 0.4869 0.5615 0.6192 0.6577 0.6775 0.6949 0.7058 0.7145 0.7223 0.6186

Ensembled 0.3746 0.5016 0.5688 0.6241 0.6582 0.6769 0.6945 0.7032 0.7106 0.7170 0.6229

Table 3. Precision, Recall and F1 results on TAPOS validation set with different Rel.Dis. thresholds. (Detailed version of Table 2 from
main paper)

Figure 2. Visualization of detected boundaries on the validation set of Kinetics-GEBD compared with ground truth [2]. The first
and second rows show our predictions for change in action and change in environment. The third row demonstrates the effectiveness of
patchwise processing, where only a tiny fraction of the frame changes (shown with blue color patches) while the rest remains static.

2



D. Pseudo code
For better reproducibility, we provide the pseudo code of

the proposed algorithms 1 and 2 in the main paper.

Pseudo code: FlowGEBD

1 def FlowGEBD(videoFile):
2 input_video = ParseVideo(videoFile)
3 total_frames = len(input_video)
4

5 #Initialize required containers & variables
6 patch_flow = []
7 PT_boundaries = []
8 FN_boundaries = []
9 idx = 1

10

11 #Preprocessing
12 frame_prev = convertRGBToGrayscale(...)
13 #Using API COLOR_BGR2GRAY(...)
14

15 patches_prev = getPatches(frame_prev)
16

17 #Initial pixels for PT method
18 p0 = sampleRandomPixels(patches_prevs)
19 initial_len = len(p0)
20

21 #Process the video frame-by-frame
22 while idx < total_frames:
23

24 frame_curr = convertRGBToGrayscale(...)
25 #Using API COLOR_BGR2GRAY(...)
26

27 patches_curr = getPatches(frame_curr)
28

29 #Both algorithms are processed patchwise
30 for i in range(num_patches):
31 #Get Boundary Status from PT
32 p1, status = getPixelTrackingStatus(

args)
33 if status is True:
34 #Mark the boundary
35 PT_boundaries[i].append(idx)
36 p0[i] = sampleRandomPixels(
37 patches_curr)
38 initial_len[i] = len(p0[i])
39 else:
40 p0 = p1
41

42 #Record PatchFlow from
43 max_flow = computeDenseMaxFlow(args)
44 patch_flow[i].append(max_flow)
45

46 patches_prev = patches_curr
47 idx += 1
48

49 FN_boundaries = getFNBoundaries(patch_flow)
50 #Ensembling of both boundary sets (Algo. 3)
51 boundaries = refine(PT_boundaries,
52 FN_boundaries)
53

54 def getPixelTrackingStatus(args):
55 prev_frame, curr_frame, p0, intial_len = args
56

57 p1, st, err = getSparseOpticalFlow(...)

58 #Using API calcOpticalFlowPyrLK(...)
59

60 fraction_of_pixels = len(p1) / initial_len
61

62 return p1, (fraction_of_pixels < θ1)
63 def computeDenseMaxFlow(args):
64 prev_frame, curr_frame, p0 = args
65

66 denseFlow = getDenseOpticalFlow(...)
67 #Using API calcOpticalFlowFarneback(...)
68

69 reducedFlow = max(denseFlow)
70

71 return reducedFlow
72

73 def getFNBoundaries(patchFlow):
74 boundaries = []
75 for i in range(num_patches):
76 flow = normalize(patchFlow[i])
77 indices = argWhere flow > θ2
78 boundaries.append(indices)
79

80 return boundaries

References
[1] Dian Shao, Yue Zhao, Bo Dai, and Dahua Lin. Intra-and inter-

action understanding via temporal action parsing. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 730–739, 2020. 1

[2] Mike Zheng Shou, Stan Weixian Lei, Weiyao Wang, Deepti
Ghadiyaram, and Matt Feiszli. Generic event boundary detec-
tion: A benchmark for event segmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 8075–8084, 2021. 1, 2

3


