
Learning Intra-class Multimodal Distributions with Orthonormal Matrices
Supplementary Material

Jumpei Goto, Yohei Nakata, Kiyofumi Abe, Yasunori Ishii
Panasonic Holdings Corporation, Japan

{goto.jumpei, nakata.yohei, abe.kiyo,

ishii.yasunori}@jp.panasonic.com

Takayoshi Yamashita
Chubu University, Japan

takayoshi@isc.chubu.ac.jp

In this supplementary material, we give more visual-
ization examples of the coarse-to-fine experiments (Ap-
pendix A), the influence of the label smoothing loss on the
proposed method (Appendix B), and the inference time of
the proposed model (Appendix C).

A. Visualization examples of coarse-to-fine ex-
periments

In Sec. 4.2 of the main paper, we verified that the pro-
posed method can obtain finer representations than the con-
ventional methods via the coarse-to-fine experiments. We
give more visualization examples to stress the interpretabil-
ity of the features extracted by the proposed method in this
section. Figure A1 shows t-SNE visualization results on
CIFAR-20 [2] for the “vehicles 1” and “vehicles 2” cate-
gories. Specifically, the results reveal that the vanilla tech-
nique exhibits overlapping “train” and “bus” features, and
although the DNC approach mitigates this propensity, ar-
eas with “train,” “bus,” and “streetcar” features overlapping
still exist. Conversely, the proposed method is able to dis-
tinguish these three classes; thus, we confirmed that the pro-
posed technique can separate features even in complex fea-
ture distributions. Figure A2 shows the nearest neighbor
examples of CIFAR-20 training images derived from the
query test images. Despite the variations in vehicle type, an-
gle, color of viewing the car, and road surface conditions in
the DNC examples, the proposed method demonstrates high
interpretability through the similarity in the appearance of
the retrieved images. Figures A3 to A6 depict t-SNE vi-
sualization outcomes for ImageNet-127 [4] and the nearest
neighbor instances of ImageNet-127 training images from
the query test images. These visualization results substanti-
ate that the proposed method can extract more interpretable
features compared to the conventional methods without re-
lying on fine-grained ground truth labels.

B. Influence of label smoothing loss

As shown in Tab. 3 in the main paper, DNC [7] outper-
formed the proposed method when utilizing the Swin [3]
architecture. In this section, we examined the cause of this
performance discrepancy. Since the proposed method in-
corporates the orthonormal matrices after the backbone, the
difference in performance can be attributed to the difference
in the process of the classifier between the ResNet and Swin
architectures. Thus, we assessed the difference by concen-
trating on the fact that ResNet [1] employs the cross-entropy
loss, whereas Swin uses the label smoothing loss [5].

To investigate the impact of label smoothing loss on the
proposed method, we prepared models trained with both the
cross-entropy loss and the label smoothing loss. All ex-
perimental conditions except for the loss function are the
same as the CIFAR-100 [2] experiments. Table A1 shows
the top-1/5 accuracy of the proposed model with each loss.
Both the top-1 and top-5 accuracies diminish when replac-
ing the cross-entropy loss with the label smoothing loss.
Notably, the top-5 accuracy experiences a significant degra-
dation by 1.95 points, suggesting that the proposed method
fails to capture inter-class relations using the label smooth-
ing loss. Figure A7 depicts t-SNE visualizations of features
extracted by the proposed method using both the cross-
entropy loss (a) and the label smoothing loss (b). The la-
bel smoothing loss treats all classes other than the ground
truth class equally by assigning a constant value to these
classes. This property results in more compact intra-class
feature distribution as shown in Fig. A7(b) because the fea-
tures are learned to be mapped away from each other; how-
ever, if the distribution of features is too compact, the data
multimodality cannot be represented. In fact, we can visu-
ally confirm that the distribution of the “lawn-mower” class
features in Fig. A7(a) is multimodal, while the distribution
in Fig. A7(b) is unimodal. Additionally, it can be observed
from Fig. A7 that the label smoothing loss causes the fea-
tures to lose inter-class relations. For example, while fea-
tures in the “lawn-mower” and “tractor” categories are plot-
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Figure A1. t-SNE [6] visualizations of features extracted from CIFAR-20 [2] images of “vehicles 1” and “vehicles 2” classes (first row). The
second row extracts three sub-categories, i.e., “bus,” “streetcar,” and “train,” from the scatters plotted in the first row for better visualization.

query top retrievals from DNC top retrievals from the proposed model

Figure A2. Nearest neighbor images from the models trained on CIFAR-20 [2] and evaluated on the fine-grained labels. Correct retrievals
are framed with green grids, and incorrect retrievals are framed with orange grids. The query images are from the “bus”, “streetcar”, and
“train” categories.

Table A1. Top-1 and top-5 accuracy (%) on CIFAR-100 [2] val-
idation set. CE and LS represent the cross-entropy loss and the
label smoothing loss, respectively.

Method Loss top-1 top-5

Proposed CE 80.53 ± 0.25 95.82
Proposed LS 79.79 ± 0.25 93.87

ted close together with the cross-entropy loss in Fig. A7(a),
features of “lawn-mower” with the label smoothing loss
are closer to those of “butterfly” than those of “tractor”
in Fig. A7(b), which is against the intuition that a “lawn-
mower” is more like a “tractor” than a “butterfly.” From
these results, we found a direction for future extensions,
such as label smoothing that takes inter-class relations into
account [8].

C. Inference time
The proposed method incorporates the process of pro-

jecting the original backbone features using orthonormal
matrices. Thus, we examine the speed impact resulting
from the addition of these orthonormal matrices. To eval-

Table A2. Inference time (ms) on the ImageNet dataset with a
resolution of 224×224.

Method Backbone Inference time

Vanilla ResNet-50 6.604
DNCK=4 [7] ResNet-50 6.950

Proposed ResNet-50 6.899

uate the inference time of the proposed method, we em-
ployed the ResNet-50 model and the ImageNet dataset with
a resolution of 224x224, measuring the time taken for the
model to infer an image. We conducted the time mea-
surement 10,000 times with three methods, which are the
vanilla model, DNC, and the proposed model, on a NVIDIA
V100 GPU. The mean inference time is reported in Tab. A2.
By substituting the d-dimensional weight vectors with the
n×d-dimensional weight matrices with n = 10 in the clas-
sifier, the inference speed of the proposed model becomes
only about 4% slower than that of the vanilla model. On
the other hand, the inference speed of the proposed model
is marginally faster than that of DNC even though the num-
ber of the sub-centroids K = 4 is smaller than that of the
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Figure A3. t-SNE [6] visualizations of features that the proposed method extracted from ImageNet-127 [4] images of the coarse-grained
label of “dish” (left). Nearest neighbor images from the query images are illustrated on the right. Correct retrievals are framed with green
grids, and incorrect retrievals are framed with orange grids. The query images are from the fine-grained categories of “cheeseburger,”
“hotdog,” and “pizza.”
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Figure A4. t-SNE [6] visualizations of features that the proposed method extracted from ImageNet-127 [4] images of the coarse-grained
label of “mollusk” (left). Nearest neighbor images from the query images are illustrated on the right. Correct retrievals are framed with
green grids, and incorrect retrievals are framed with orange grids. The query images are from the fine-grained categories of “snail,” “sea
slug,” and “chiton.”

rows of the weight matrices n = 10. This can occur be-
cause the official implementation of DNC1 applies the layer
normalization to the output logits.
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Figure A5. t-SNE [6] visualizations of features that the proposed method extracted from ImageNet-127 [4] images of the coarse-grained
label of “salamander” (left). Nearest neighbor images from the query images are illustrated on the right. Correct retrievals are framed with
green grids, and incorrect retrievals are framed with orange grids. The query images are from the fine-grained categories of “European fire
salamander,” “eft,” and “spotted salamander.”
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Figure A6. t-SNE [6] visualizations of features that the proposed method extracted from ImageNet-127 [4] images of the coarse-grained
label of “ship” (left). Nearest neighbor images from the query images are illustrated on the right. Correct retrievals are framed with green
grids, and incorrect retrievals are framed with orange grids. The query images are from the fine-grained categories of “container ship,”
“liner,” and “pirate.”
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Figure A7. t-SNE [6] visualizations of features that the proposed method extracted from CIFAR-100 [2] images with the cross-entropy
loss (a) and the label smoothing loss (b). Ten classes are randomly selected from the CIFAR-100 categories and some images of “lawn-
mower” are illustrated at the bottom.


