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1. Introduction
This supplementary document provides additional de-

tails and results that were not included in the main paper.
Section 2 provides additional details surrounding the data
collection, Section 3 provides additional details surround-
ing the network architecture and training, Section 4 pro-
vides additional details about the mixed reality applications,
and Section 5 provides additional results.

2. Data Collection Details
2.1. Actions

Participants were prompted with actions from a list of
prompts, shown in Table 9. Most of the actions were re-
peated across four force levels: low force, high force, slide
(force unspecified), and no contact. Due to the highly vary-
ing frictional properties of each surface, we did not prompt
a force level during the slide prompt. Not all participants
completed all actions.

2.2. Data Collection Hardware

To record pressure, a Sensel Morph [5] pressure sen-
sor was used. This sensor records a 105 × 185 pressure
image. To vary the sensor’s appearance, various commer-
cially available adhesive vinyl coverings were applied to the
sensor’s active area. The location and lighting were also
changed to vary exposure (and thus the amount of motion
blur), hue, and saturation of the images.

Data was captured from seven consumer-grade web-
cams, including four Logitech Brio 4K webcams, one Dell
Ultrasharp 4k webcam, one Elgato Facecam 1080p we-
bcam, and one Lumina 4k webcam. All streams were
recorded at 1080p and 30 FPS, and later down-sampled to
15 FPS due to the large size of the dataset.

Most of the data was captured under unaltered room
lighting, however some was collected in a room illuminated
with smart LED bulbs which randomly changed brightness,
providing a greater diversity of lighting. The data collection

took place in twenty different environments.
For recordings with the ground truth pressure sensor, the

cameras were spatially calibrated with an ArUco board [1].
The cameras were temporally aligned with pressure sen-
sor readings with a specialized tool. When pressed against
the pressure sensor, the tool would illuminate, allowing the
pressure readings and camera frames to be aligned.

2.3. Dataset Statistics

Participants 51
Cameras 7
Objects 106

Locations 20
Resolution 1920x1080
Framerate 15 FPS

Total Frames 2.9M
Full Train Frames 182k

Weak Train Frames 1805k
Full Val Frames 21k

Weak Val Frames 72k
Full Test Frames 305k

Weak Test Frames 509k
Mean force, high force prompt 19.6N
Mean force, low force prompt 3.6N

Table 5. ContactLabelDB Statistics.

We show additional information about the dataset in Ta-
ble 5.

During data collection, participants were prompted to
apply high and low forces. Figure 9 shows the distribu-
tion of total applied forces as measured in the fully labeled
dataset. Pressure data is integrated over the sensor area
to calculate total force. This plot includes data from all
sequences, meaning that the data is representative of one-
finger contact as well as five-finger contact. Generally, we
find a consistent difference between the two classes, and
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Figure 9. Cumulative distribution of total applied force versus
prompt. During data collection, participants apply higher forces
when prompted to apply “high force” as opposed to “low force”.

participants apply higher forces when prompted in the “high
force” case.

3. Network and Evaluation Details
3.1. Training Details

PressureVision++ takes cropped images of the hand as
input. An off-the-shelf hand detector, MediaPipe [4], gen-
erates hand bounding boxes on all images. The bounding
box is used to generate a crop of the hand for PressureVi-
sion++. We discarded frames where the hand detector did
not find a hand. When the participant interacted with re-
flective surfaces, the hand detector frequently detected both
the hand and its reflection. In cases when two hands were
detected, the hand towards the top of the image was chosen.

PressureVision++ was implemented in PyTorch [6] and
used network implementations from the segmentation-
models-pytorch project [8]. PressureVision++ was trained
with batches of 28 images: 14 fully-labeled images and 14
weakly-labeled images. Batch size was set to fully utilize
the memory of an RTX 3090 GPU. The network was op-
timized with the Adam optimizer [3] for 300k iterations.
The learning rate was 0.001 for the first 100k iterations, and
0.0001 thereafter. Training data is augmented with horizon-
tal flips, color jitter, random rotations, scaling, and transla-
tions.

The complete loss function is:

L = Lp + λ1Lw + λ2Ld (1)

We choose λ1 = 0.01 and λ2 = 0.001.

3.2. Cross-Dataset Generalization

In table 6, we show cross-dataset generalization results
when PressureVision++ is tested and trained on Pressure-
VisionDB [2] and ContactLabelDB. Although ContactLa-
belDB contains more diversity in terms of objects, it appears

that the model trained on ContactLabelDB and tested on
PressureVisionDB performs worse than the model trained
on PressureVisionDB and tested on ContactLabelDB.

We hypothesize that this is because PressureVisionDB
was captured in very harsh, artificial lighting conditions.
These extreme lighting conditions are not captured in Con-
tactLabelDB, which instead captures normal indoor light-
ing environments. We believe that models trained on Con-
tactLabelDB generalize poorly to the extreme lighting cap-
tured in PressureVisionDB. During real-world testing, we
find models trained on ContactLabelDB generalize much
better to real-world scenarios.

Train
Test PV-DB CL-DB

PV-DB [2] 41.3% 9.2%
CL-DB (ours) 2.3% 27.5%

Table 6. Cross-dataset results comparing PressureVisionDB (PV-
DB) to ContactLabelDB (CL-DB).

3.3. Accuracy of Estimated Contact Labels

PressureVision++ produces two outputs for every input
image: a pressure image and a contact label. The main pa-
per analyzes the accuracy of the estimated pressure image,
and this section evaluates the accuracy of the estimated con-
tact label.

We compare the performance of the pressure estimate to
the contact label estimate. We report the following metrics,
which are computed over both the fully labeled and weakly
labeled test sets:

• Contact Accuracy (pressure image) uses the estimated
pressure image to determine if any contact is present
across the entire image. This is compared to the
ground truth contact. This is the same metric reported
in Section 5 of the main paper.

• Contact Accuracy (contact label) uses the estimated
contact label to determine if any contact is present
across 5 fingers. This is compared to the ground truth
contact.

Contact Accuracy (pressure image) 83.7%
Contact Accuracy (contact label) 86.1%

Table 7. Contact Accuracy compared between pressure estimates
and contact label estimates.

We find that the pressure-based contact accuracy and
contact-label-based contact accuracy perform similarly,
with the contact-labeled-based estimate performing slightly
better.



Contact Label Segment Accuracy
Thumb 89.6%
Index 87.8%

Middle 90.8%
Ring 92.4%
Pinky 92.5%
Force 77.5%

Table 8. Per-finger and force accuracy.

We report per-finger contact label accuracy in Table 8.
Force accuracy uses the estimated contact label to determine
if the hand applies a high or low force. This is compared
to the ground truth force level as prompted to the partici-
pant. The force accuracy is generally lower than the other
segments of the contact label, suggesting that estimating the
quantity of force is a more difficult task than the binary pres-
ence of contact.

4. Applications in Mixed Reality

4.1. Surface Interactions

In order to align coordinate frames between the RGB
camera and the Meta Quest 2 headset, we designed a custom
calibration tool (Figure 10). The calibration tool features an
ArUco board [1] to estimate the pose of the RGB camera
used for pressure estimation. The pose of the headset is cal-
ibrated by attaching a controller to the calibration tool. A
calibration procedure is performed at the beginning of each
session.

In order to calculate precise touch locations, the peaks of
the pressure blobs are found with a local maxima detector.
A custom application is developed for the Quest headset
using Unity and the Oculus Integration Toolkit.

4.2. Net WPM Metric

For typing speed evaluations, words per minute (WPM)
[7] is calculated by dividing the number of characters typed
(including letters, spaces, and punctuation), c, by 5 to ar-
rive at the number of words typed. Time t is measured in
seconds between the first keystroke and pressing “Enter” to
complete the sentence.

WPM =
c/5

t/60
(2)

However, the WPM metric does not consider errors in
typing. In our evaluations, we report net words per minute
(Net WPM) [7], which modifies the standard WPM metric
to factor in errors. A single character error (insertion, dele-
tion, or substitution) results in the subtraction of 5 charac-
ters, or one word. Where e is the number of single-character

Figure 10. Calibration tool used to align coordinate frames be-
tween the RGB camera and the Meta Quest 2 headset. The con-
troller is rigidly connected to the ArUco board.

errors, Net WPM can be calculated as:

NetWPM =
c/5− e

t/60
(3)

4.3. Typing User Study

For the typing user study, 10 participants were recruited
who did not participate in the collection of ContactLabelDB
and who were not familiar with the research. The order of
presentation of the two keyboards was randomized. Before
collecting data, participants were allowed to practice typing
with that keyboard for as long as they wanted.

After the study, participants were given a free-form text
box to explain their perceived advantages and disadvan-
tages of each typing method. They also rated which key-
board they preferred on a scale of 1 “strongly prefer Direct
Touch Keyboard” to 5 “strongly prefer PressureVision++
Keyboard”. The average score was 4.4, with only one par-
ticipant not preferring the PressureVision++ keyboard.

We hypothesize as to the reasons why participants pre-
ferred the PressureVision++ Keyboard. For the Direct
Touch Keyboard, due to the noise in pose estimation, to
prevent false keystrokes, participants must press each key
very deeply. Additionally, users generally must look at their
hands to find the correct key since it is difficult to memorize
the location of mid-air keys. For the PressureVision++ Key-
board, users only have to hover their fingers a few millime-
ters above the surface, and since the surface allows them to
rest their hands and provides a reference point, they can type
without looking at their hands. The most common error
that participants made with the PressureVision++ keyboard
was pressing a key adjacent to the desired key, resulting in
single-character errors. We hypothesize that a simple auto-
correct system would be able to correct these errors easily
and improve typing speed.



5. Additional Results
Additional results are shown in Figures 11, 12, 13, and

14.
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Action Force Level
Index, fingers {Low, high, slide, no contact}
Thumb {Low, high, slide, no contact}
Index and thumb {Low, high, slide, no contact}
Index and middle {Low, high, slide, no contact}
Middle {Low, high, slide, no contact}
Ring {Low, high, slide, no contact}
Pinky {Low, high, slide, no contact}
All fingers {Low, high, slide, no contact}
Press fingers sequentially {Low, high}

Table 9. Participants were prompted according to this list of actions, e.g., press thumb, low force. Not all participants completed the entire
list of actions.

All fingers
Force unspecified

No contact

All fingers
High force

All fingers
Force unspecified

Index, middle
Low force

All fingers
High force

Index, thumb
High force

Image PressureVision++ Ground Truth

Figure 11. Results from the fully labeled test set where ground truth pressure is measured by a pressure sensor. Testing participants are
held out from the training sets.



Index, middle
Low force

Index
High force

Index, thumb
High force

No contact

All fingers
Low force

All fingers
High force

Index, thumb
Low force

Image PressureVision++ Ground Truth

Figure 12. Results from the fully labeled test set where ground truth pressure is measured by a pressure sensor. Testing participants are
held out from the training sets.



Index
High force

Image PressureVision++

Index
Low force

No contact

All fingers
Force unspecified

Index, thumb
High force

All fingers
High force

All fingers
High force

Figure 13. Results from the weakly labeled test set where no ground truth pressure is available. Testing participants are held out from the
training sets.



Index
Low force

Image PressureVision++

Pinky
Low force

Index, middle
High force

Ring
Force unspecified

Index, middle
High force

No contact

Index, thumb
High force

Figure 14. Results from the weakly labeled test set where no ground truth pressure is available. Testing participants are held out from the
training sets.
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