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1. Proof of Proposition 1 and its Generalization
We give the proof of proposition 1, which is easy to

establish, then we derive a formula giving the number of
templates in a more general realistic case (proposition 3).
For this, we introduce an intermediate step (proposition 2)
and most importantly a set of notations that facilitates the
derivation of the final analytic formula.

Let us consider a collection of object sets {Oi}Ni=1 and
a collection of attribute sets {Ai}Ni=1 that are used to de-
fine a template with N objects, each being qualified by an
attribute. Hence, at position i (without considering the con-
text), the prompt results from the inference of the template
and contains a named object oi ∈ Oi that is qualified by a
(color) adjective ai ∈ Ai.

Proposition 1: if |mO| ≥ N , |A| ≥ N and ∀i ∈
[[1, N ]],Ai = A,Oi = O and ∀(i, j) ∈ [[1, N ]]2 s.t i < j,
we force ai ̸= aj and oi ̸= oj , thus the number of unique
prompts generated by the template is |O|!|A|!

(|O|−N)!(|A|−N)!

Proof. Without attribute, each prompt contains N objects
that should be different; thus the number of unique possible
prompts is the number of (arrangements) N -permutations
of |O| thus |O|!

(|O|−N)! . Similarly, if one considers the at-
tributes only that must be different at each position i, we
have N -permutations of |A|. Finally, since both are inde-
pendent, the final number of unique prompts generated by
the template is the product of both.

We can consider a generalization where the sets are
different at each position, that is we remove the conditions
ai ̸= aj and oi ̸= oj from proposition 1. For example,
such a template could be defined to have a vehicle at
the first position, a fruit at the second position, and an
animal at the third one. The intersection of the sets at each
position may also be non-empty, for example, the vehi-
cle may be {blue, red, green, black, yellow,white},
the fruit {red, green, yellow}, and the animal

{green, black, yellow,white}. Similarly, the attributes
can be repeated in the prompt e.g. if one wants “a yellow
car and a red apple and a red elephant”.

Proposition 2: if ∀i ∈ [[1, N ]], |Oi| ≥ N , |Ai| ≥ N thus
the number of unique prompts generated by the template is∏N

i=1 |Ai|.|Oi|. Hence, if ∀i ∈ [[1, N ]],Ai = A,Oi = O,
thus the number of unique prompts generated by the tem-
plate is (|O|.|A|)N

Proof. At any position i any all the attributes ai ∈ Ai

can be associated with the object oi ∈ Oi thus it gives
|Ai|.|Oi| possibilities. Since repetitions are allowed, we
have a structure of arborescence (rooted tree), thus the to-
tal number of prompts is the product at any position, thus∏N

i=1 |Ai|.|Oi|.

However, if the sets of objects are not exclusive we con-
sider that we should not allow any repetition, since it would
be strange to require “a car and an apple and a car”. Such
repetition can nevertheless be allowed if the object appears
several times with different attributes. In other words, if
∀i ∈ [[1, N ]], |Oi| ≥ N , |Ai| ≥ N and ∀(i, j) ∈ [[1, N ]]2 s.t
i < j we force oi ̸= oj if ai = aj .

In that case, things depend on the overlap between the
combination of attributes and objects at each position. In
other words, if the attributes are colors, it depends on how
many times the same colored object can appear at different
positions in the prompt. Let us consider the sets Ui = Ai ×
Oi of objects with attributes at position i in the prompt.
Since we have oi ̸= oj if ai = aj , each Ui can be split into
two disjoint subsets. The subset U0

i contains the objects
with attributes that can appear at position i only, and its
complement in Ui contains the objects with attributes that
can appear at another position j ̸= i in the prompt.

The number of prompts that the template can generate
depends on the overlap between these complements of the
U0
i . For instance, the “blue car” can appear at positions

1 and 3, while the “green apple” can appear at positions



U1 U2 U3

blue truck green banana green tiger
red truck purple banana blue tiger
blue bike green cherry green bear
red bike purple cherry blue bear
red car purple apple yellow apple
blue car blue car

green apple green apple

Table 1. Example of objects with attributes, above dashed line:
that can appear at a specific location and are thus in U0

i ;
below dashed line: that can appear at several locations in the
prompt. One notes that in that case O1 = {′truck′,′ bike′,′ car′}
and A1 = {′blue′,′ red′}

.

configuration P
pos. 1 pos. 2 pos. 3

blue car green apple U0
3 {3}

blue car U0
2 green apple {2}

blue car U0
2 U0

3 {2, 3}
U0
1 green apple blue car {1}

U0
1 green apple U0

3 {1, 3}
U0
1 U0

2 blue car {1, 2}
U0
1 U0

2 green apple {1, 2}

Table 2. Illustration of the set P (fourth col.) for the example of
Tab. 1. The notation U0

i means that any colored object of U0
i can

be used at that position

2 and 3 as illustrated in Tab. 1. The objects that can ap-
pear at several positions define some configurations that
are uniquely defined by the set of positions where they ap-
pear in the prompt. Symmetrically, these configurations are
also defined by the sets of positions where only one ob-
ject appears at a single position (thus from U0

i ). We note
P the set of these last positions (See Tab. 2 for an illustra-
tion of these sets). Note that the same element can appear
several times in P , actually when several objects with at-
tributes can appear at the same position (e.g. both “blue
car” and “green apple” can appear at position 3 in our ex-
ample). Formally, P is a set that contains the sets of indexes
of the non-empty positions of all the N-uples that verify
(Ui\U0

i ) ∩ (Uj\U0
j ) ̸= ∅. Using this formalization of the

problem, we have:

Proposition 3: Let ∀i ∈ [[1, N ]], |Oi| ≥ N , |Ai| ≥ N . If
∀(i, j) ∈ [[1, N ]]2 s.t i < j and ai = aj , we force oi ̸= oj ,
thus the number of unique prompts generated by the tem-
plate is:

N∏
i=1

|U0
i |+

∑
P∈P

∏
i∈P

|U0
i | (1)

Proof. Since the elements of the U0
i are different and appear

at a unique position, they generate
∏N

i=1 |U0
i | templates.

For any configuration in P , an object with attributes
(from one of the Ui\U0

i ) appears at most once since if
ai = aj thus oi ̸= oj .

For each configuration P ∈ P (such as the lines of
Tab. 2) the number of templates generated is the product of
all the |U0

i | for that configuration, thus
∏

i∈P |U0
i | for each

configuration of position P . If we sum for all the possible
P in P , it results in the number of templates generated with
objects with attributes that can appear at several positions.

The sum of both terms gives the value in Equation 1

Hence the exact number of prompts generated depends
on the possible overlaps between objects with attributes,
both the number of elements and the place they can appear
or not. By introducing more notations on these elements
and their position, one could derive a formula but it would
be tedious, without obvious interest in practice. Indeed, P
can be built easily through a tree structure, by considering
iteratively all the sets (Ui\U0

i )∪{∅}, and allowing only the
nodes that did not previously appear and the branch corre-
sponding to a non-empty set in P (such as in Tab. 2).

2. Prompt Templates
We detail the templates and the COCO labels used in the

study.

2.1. Without attribute

The 24 COCO labels used for the study of Sections 4.1
and 4.2 are the following: bicycle, car, motorcycle, truck,
fire hydrant, bench, bird, cat, dog, horse, sheep, cow, ele-
phant, bear, zebra, giraffe, banana, apple, broccoli, carrot,
chair, couch, oven, refrigerator. The prompt template is “a
photo of det(o1) o1 and det(o2) o2”.

For the semantic studies, end of Section 4.3, we use the
vehicles, animals, and food labels i.e. bicycle, car, motorcy-
cle, airplane, bus, train, truck, boat, bird, cat, dog, horse,
sheep, cow, elephant, bear, zebra, giraffe, banana, apple,
sandwich, orange, broccoli, carrot, hot dog, pizza, donut,
cake. The template used is “a photo of det(o1) o1 and
det(o2) o2”.

To evaluate the capacity of models to represent multiple
objects, we use the following template :

• 1 object: “a photo of det(o1) o1”

• 2 objects: “a photo of det(o1) o1 and det(o2) o2”

• 3 objects: “a photo of det(o1) o1” next to det(o2) o2
and det(o3) o3”

• 4 objects: “a photo of det(o1) o1” next to det(o3) o2
with det(o3) o3 and det(o4) o4”



Model w comma w/o comma

IF 0.12 0.21 (+0.09)

SD 1.4 0.01 0.02 (+0.01)

SD 1.4 A&E 0.13 0.17 (+0.04)

SD 2 0.13 0.15 (+0.02)

SD 2 A&E 0.17 0.21 (+0.04)

unCLIP 0.13 0.10 (−0.03)

Table 3. Comparison of the TIAM for two templates with 3 enti-
ties, separated by commas or related with words.

We do not use commas because it tends to reduce the
score. We report in Tab. 3 the comparison between the
prompt “a photo of det(o1) o1 next to det(o2) o2 and
det(o3) o3” and the prompt with a comma “a photo of
det(o1) o1, det(o2) o2 and det(o3) o3”.

2.2. With Attribute

To evaluate the attribute binding in Section 4.4, we used
the following templates:

• one object : “a photo of det(a1) a1 o1”

• two objects : “a photo of det(a1) a1 o1 and det(a2) a2
o2 ”

As reported in Sections 3.2 and 4.4 of the main paper, we
have O = {car, refrigerator, giraffe, elephant, zebra} and
A = {red , green, blue, purple, pink , yellow}.

3. Reference Colors and Other Possible At-
tributes (Size, Texture)

We plot in Fig. 2 the interpolation of the best examples
in Lab on the CIE 1931 Chromaticity Diagram. The exact
chroma values were extracted from Fig.1 in [9], available
at this link. We do not use our reference colors orange and
brown because they are too close to red and black respec-
tively in the CIELab space (Fig. 1).

To consider an attribute in TIAM, two crucial points need
to be considered:

• being able to extract the attribute from the image, with
a sufficient level of reliability

• being able to name the attributes with unambiguous
words in the prompt, ideally in several languages

The attribute colors have the advantage of quite easily meet-
ing these two conditions, as explained in Section 3.2 of the
main paper, in particular, thanks to the works of Berlin and
Kay [1]. In other cases, however, this may prove trickier.

To extract the attribute size, one can rely on the bounding
box of the object detector. However, to determine whether

pi
nk re
d

or
an

ge

ye
llo

w

br
ow

n

gr
ee

n

bl
ue

pu
rp

le

bl
ac

k

wh
ite

pink

red

orange

yellow

brown

green

blue

purple

black

white

0.0 54.2 46.3 81.1 59.1106.163.7 48.0 79.5 56.0

54.2 0.0 22.7 72.1 48.9113.999.7 71.2 76.2 93.2

46.3 22.7 0.0 51.6 44.8 97.2 90.3 72.7 74.7 73.4

81.1 72.1 51.6 0.0 77.2 83.7111.3113.5103.567.9

59.1 48.9 44.8 77.2 0.0 75.4 66.0 52.1 30.1 82.8

106.1113.997.2 83.7 75.4 0.0 80.5108.076.0 81.2

63.7 99.7 90.3111.366.0 80.5 0.0 47.4 61.4 67.8

48.0 71.2 72.7113.552.1108.047.4 0.0 53.2 88.2

79.5 76.2 74.7103.530.1 76.0 61.4 53.2 0.0 100.0

56.0 93.2 73.4 67.9 82.8 81.2 67.8 88.2100.0 0.0
0

20

40

60

80

100

Figure 1. L2 norm distance between our reference colors.
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Figure 2. CIE 1931 Chromaticity Diagram with the best example
for each color. When multiple best examples for one color, we
compute one best example by averaging the value in the CIELAB
space.

an object is large, medium, or small for example, it may
also require to estimate its depth in the image (that can be
done from monocular images to a certain extent [17]), pos-
sibly an estimation of the intrinsic parameter matrix of the
camera (while the image is generated) as well as the knowl-
edge of the typical dimensions of the considered object or
living being. Each of these estimations is a potential source
of approximation that challenges the reliability of the final
judgment.

Naming the size may also be diverse. In the example
above, large may be replaced by big in English and small
by tiny in some cases. One could imagine relying on lists
of synonyms or setting a threshold on the similarity to the

https://doi.org/10.1007/978-1-4419-8071-7_113


textual embedding (e.g. BERT) of an arbitrary predefined
list of possible sizes (e.g. large, medium, small), but there
is no guarantee to get a list as unambiguous as in the case
of colors. To our knowledge, there is no equivalent of the
study of Berlin and Kay in that case. Moreover, references
to sizes tend to include intensifiers more frequently than ref-
erences to colors, like in expressions such as very small or
fairly large, which adds an element of diversity. Finally, the
way sizes are expressed can depend on forms of colloca-
tions. For instance, we can refer to a “tall man” but not to
a “tall balloon”. While this example can be probably ex-
plained by the form of the object, the easiest way to deal
with such problem would be to collect co-occurrences from
a corpus for (size adjective, noun) pairs and to use these
co-occurrences as a filter after the generation of a prompt.

Extracting texture is a long-term and well-known task
in computer vision [8] and many methods have been pro-
posed to address it [7]. The question of naming the texture
with unambiguous names may seem delicate. In the famous
Brodatz dataset for example (available here), one can note
that several of them are named Wood shingle roof (here and
href), Brick wall (here, here, or here) or Sand (here, here
and here) among others. Bhushan et al. (1997) nevertheless
identified a list of 98 representative words used to describe
texture in English [2] that was further reduced to 47 in the
Describable Textures Dataset [3]. However, such a num-
ber remains quite large (much more than the 11 colors of
Berlin and Kay), such that the correspondence in other lan-
guage than English is hazardous, not to mention the fact that
some of them may seem ambiguous to several human users
(our human study in Section 11 includes users less than 10
years old with a limited vocabulary, as well as a majority of
persons that are not computer vision scientists). Using Mul-
tidimensional Scaling (MDS) on these 98 words, Bhushan
et al. (1997) nevertheless identified 11 clusters that could
be used, although naming these clusters is still problematic
in practice. Finally, the easier approach may be to use three
axes, identified with the MDS as well, namely:

• repetitive versus nonrepetitive textures

• the nature of orientation: linearly oriented textures →
multiple or no orientation → circularly oriented tex-
tures.

• complexity or simplicity of the surface

Hence, considering other attributes than colors in TIAM
is likely feasible, but integrating them neatly into the metric
may require some work.

4. Occurrence of Objects on Images
We show in our experiments (Section 4.3) that the initial

objects in the template tend to appear more frequently than

objects inserted subsequently and reinforce the observation
that the concept that is expressed earlier in the prompt has
more chances to appear in the final image. We present the
result for two objects in Fig. 3 and three objects in Fig. 4.
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Figure 3. The proportion of occurrences of each object, based on
its position in the prompt. The template of the prompt includes
two objects.
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Figure 4. The proportion of occurrences of each object, based on
its position in the prompt. The template of the prompt includes
three objects.

5. Determining the Minimum Number of Im-
ages to Generate

In Fig. 5 we report the TIAM score as a function of the
number of generated images per prompt. The score stabi-
lizes from 16 images. We chose to compute with 32 images
to ensure robustness.

6. Detection/Segmentation Details

We use the largest YOLOv8 for segmentation1. Dur-
ing segmentation inference, we set up the object confi-
dence threshold for detection to 0.25 and the intersection
over union IoU threshold for NMS to 0.8. We compute the
score with different confidence thresholds and observe that
the score decreases linearly as the threshold values increase
(Fig. 6).

1https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-
seg.pt

http://sipi.usc.edu/database/database.php?volume=textures
https://sipi.usc.edu/database/database.php?volume=textures&image=41#top
https://sipi.usc.edu/database/database.php?volume=textures&image=42#top
https://sipi.usc.edu/database/database.php?volume=textures&image=40#top
https://sipi.usc.edu/database/database.php?volume=textures&image=47#top
https://sipi.usc.edu/database/database.php?volume=textures&image=38#top
https://sipi.usc.edu/database/database.php?volume=textures&image=50#top
https://sipi.usc.edu/database/database.php?volume=textures&image=51#top
https://sipi.usc.edu/database/database.php?volume=textures&image=55#top
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt
https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt
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Figure 5. TIAM as the function of the number of generated images
per prompt.
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Figure 6. TIAM as a function of the YOLO object confidence
threshold.

7. Text-to-Image Models Setup
All generations of images were done on Nvidia A100

SXM4 80 Go using float16. We list the main parameters
for the different models used. If not mentioned, we use the
default parameters from the library diffusers [19] (version
0.16.1).

SD 1.4 2 and SD 2 3 The models produce images of size
512×512.

• Guidance scale: 7.5

• Scheduler : DPMSolverMultistepScheduler 4 [14]

• 50 inference steps
2https://huggingface.co/CompVis/stable-diffusion-v1-4
3https://huggingface.co/stabilityai/stable-diffusion-2-base
4https://huggingface.co/docs/diffusers/api/schedulers/multistep dpm solver

unCLIP 5 The model produces images of size 256×256.

• 25 inference steps for the prior, 25 inference steps for
the decoder, and 7 steps of Super-resolution

• Prior guidance scale: 4, decoder guidance scale: 8

• Scheduler is the UnCLIPScheduler, a modified DDPM
scheduler designed for this model.

IF It exists a different configuration of the Deepfloyd IF.
We use for the first stage the L version6 with 100 infer-
ence steps and for the second stage the M version7 with
50 inference steps. We use both the DDPMS scheduler and
guidance scale of 7 for the first stage and 4 for the second
stage. With this configuration, we produce images of size
256×256.

8. Semantic Link
To investigate the impact of semantic relationships be-

tween objects, we select 28 COCO labels from three macro-
classes, vehicles, animals, and foods, and generate images
using a template with 2 objects. In order to study the in-
fluence of semantic links between objects with the same
prompt, we consider the following dissimilarity metric on
the set O.

∀ox, oy ∈ O, ox ̸= oy,

d(ox, oy) = d(oy, ox) =
TIAMzi + TIAMzj

2
(2)

∀ox ∈ O, d(ox, ox) = 0 (3)

where zi is (ox, oy) and zj is (oy, ox). For TIAMz we com-
pute the score per z (i.e. per prompt). Using this dissim-
ilarity between the labels, we project them with Multidi-
mensional Scaling (MDS) into a 2D space, as represented
in Fig. 7 for SD 1.4, in Fig. 8 for SD2, in Fig. 9 for unCLIP
and in Fig. 10 for IF. The projection can be interpreted such
that the closer two labels are, the more challenging it be-
comes for the model to represent them together. Note that
we obtained similar projections with t-SNE instead of MDS.

For all the models, we observe some clusters of objects
from the same macro-class, in particular animals. It shows
that when two objects are semantically close, they tend
to be harder being generated in the same image. Tang
et al. [18] obtain results in the same vein, showing that it is
easier to generate a non-cohyponym than a cohyponym.

5https://huggingface.co/kakaobrain/karlo-v1-alpha
6https://huggingface.co/DeepFloyd/IF-I-L-v1.0
7https://huggingface.co/DeepFloyd/IF-II-M-v1.0

https://huggingface.co/CompVis/stable-diffusion-v1-4
https://huggingface.co/stabilityai/stable-diffusion-2-base
https://huggingface.co/docs/diffusers/api/schedulers/multistep_dpm_solver
https://huggingface.co/kakaobrain/karlo-v1-alpha
https://huggingface.co/DeepFloyd/IF-I-L-v1.0
https://huggingface.co/DeepFloyd/IF-II-M-v1.0
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Figure 7. MDS on the objects score dissimilarity for SD 1.4.
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Figure 8. MDS on the objects score dissimilarity for SD 2.

However, the effect remains slight, suggesting that the
cohyponymy has either an indirect or minor link to this dif-
ficulty of generation. We quantified the effect by computing
the correlation between the TIAM score for all the templates
with two objects and the semantic distance between the two
objects. We used various methods to estimate the semantic
distance, including Wu-Palmer, the CLIPscore, and the co-
sine similarity between the embedding of the token in the
prompt (before the attention of the transformer) for SD 1.4
and SD 2. For all distances, these correlations were neg-
ative (confirming the effect) but their absolute values were
less than 0.5 (confirming the effect is slight).

9. Attribute Binding

We report the TIAM per object in Fig. 11, showing that
the first object is more often generated and correctly col-
ored. We compute the binding success rate, but by differen-
tiating by colors for attributes in the first position (Fig. 12)
and attributes in the second position (Fig. 13). We observed
that the models face greater difficulty in assigning green and
blue colors when two objects are involved (parallel with a
single label case). It is worth noting that IF performs better
than other models.
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Figure 9. MDS on the objects score dissimilarity for unCLIP.
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Figure 10. MDS on the objects score dissimilarity for IF.
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Figure 11. TIAM per object i.e. proportion of correct generated
object with the correct binding.

10. Latent Diffusion Model
We remind the architecture of the Latent Diffusion

Model of Rombach et al. (2021) in Fig. 14, since the the-
oretical explanation of Section 4.2 of the main paper relies
on it.

During the investigation of the seed performances of the
models, we made a noteworthy finding. We observed that
the SD models exhibited similar behavior in relation to the
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Figure 12. Binding success rate for the first object, among the first
objects correctly detected.

SD
 1.

4

SD
 1.

4 A
&E

SD
 2

SD
 2 

A&E
un

CLIP IF
0.0

0.1

0.2

0.3

0.4

0.5

Bi
nd

in
g 

su
cc

es
s r

at
e 

a 2

blue
green

pink
purple

red
yellow

Figure 13. Binding success rate for the second object, among the
second objects correctly detected.

seeds (if we do not consider the performance gap between
the score of the model) i.e. when we standardize the score
of each seed for each model (Fig. 15) the score exhibits
a remarkably similar trend for both models with the same
“good” and “bad” seeds. However, we explain in the arti-
cle (Section 4.2) that the “good” and “bad” seeds are spe-
cific to each model, which may seem contradictory at first
glance.

To explain this point, we need to remember the train-
ing of diffusion models. Let x0 be an original image. We
had on the image a scaled quantity of noise ϵ ∼ N (0, 1)
to obtain xt (xt =

√
ᾱtx0 +

√
1− ᾱtϵ) and the U-net

ϵθ try to predict with the added noise (the loss function
(EE(I),ϵ∼N (0,1)

[
||ϵ− ϵθ(xt, t)||22

]
). At each training step

a t is drawn the model must predict the noise. In the case of
LDM, just replace the x with z because the diffusion pro-
cess is in the latent space.

As the two models are trained on the same data, we hy-
pothesize that they are trained on the same zt i.e. they are
trained to predict the same ϵ. However ϵ is random, we

suspect that all the zt are precomputed and the associate ϵ
saved, and they used the same for the training of both mod-
els. Because of this particularity during the training, the
models try to retrieve the z0 from multiple possible t. The
models learn a similar path of reverse diffusion. At infer-
ence, when we draw a similar noise χT , the reverse process
will be similar and conduct to near χt and finally to a near
χ0. We show in Fig. 16 that with the same prompt and the
same starting noise, we exhibit strong composition similar-
ity that explains the parallel performance of the seed.



Figure 14. Architecture of the Latent Diffusion Model [16].
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Figure 15. Standardized score per seed for SD 1.4 and SD 2. We observe that both of them have globally the same “good” and “bad” seeds
(see Section 10 for explanations).

11. Human Evaluation and Comparison to
Other Automatic Metrics

We conducted a human evaluation to determine how
much TIAM is aligned to it, and compared it to two other
automatic metrics based on the CLIP [15] score and BLIP
[12] score.

We randomly sample 32 prompts, comprising 16 with
one object and one attribute/color (referred to as C), and
16 with two objects (referred to as O). Subsequently, we
randomly select one image per prompt and record the cor-
responding scores provided by our metrics for each image.
We use images generated by the IF model. We then solicit
human evaluators to discern whether they perceive align-
ment between the given prompt (utilized for generation) and
the associated image. An illustrative example is given in

Fig. 17. For a fair comparison with CLIP and BLIP, which
solely yield a similarity score between images and cap-
tions, we refrained from rephrasing the prompts into spe-
cific questions like ”Is the first object present?” or ”Is the
second object present?”, that would have given an advan-
tage to TIAM.

We conducted our study on 57 humans aged from 7 to
79. Only 6 of them could be considered text-to-image (T2I)
experts (the author who made the study did not participate
in the assessment), while other human subjects never ma-
nipulated T2I models, or even didn’t know it could exist.
In any case, the agreement of TIAM with the experts’ as-
sessment was not significantly different than that with non-
experts. Nor did we find any significant difference in terms
of gender or age. For non-English speakers, the prompts
were translated into their native language (in particular for



Figure 16. We present images obtained with the same seed and same prompt for SD 1.4 (left) and SD 2 (right). Note how similar the
compositions are. The prompt and seed are respectively ”a photo of a blue circle” seed 17, ”a photo of a cat” seed 27, ”a photo of a pink
elephant” seed 18, and ”a photo of a penguin” seed 45.



a photo of an apple and an elephant

YES                   NO

For each image, indicate whether the text describing the image is aligned with the image or not.
YES: aligned, NO: not aligned

Figure 17. Extract from the study for the human evaluation.

subjects less than 15 years old).
For automatic methods, we used the OpenAI ViT-B/32

CLIP model 8 and the Salesforce BLIP model 9. The BLIP
and CLIP score is a similarity score between the embedding
of the image and the caption used to generate the image.

The agreement between the human annotator was as-
sessed in terms of Fleiss’ kappa [4]. According to Landis
and Koch [10], a kappa of [0.21 − 0.40] is fair, that in
[0.41 − 0.60] is moderate, that in [0.61 − 0.80] is substan-
tial and the agreement is almost perfect when the Fleiss’
kappa is in [0.81 − 1.00]. With a global value of κ = 0.73
the agreement of the human annotators of our study is thus
substantial. If one distinguishes the two subsets, the agree-
ment on C is in the upper range of the moderate agreement
(0.59) while that for O is almost perfect (0.85). It neverthe-
less shows that, even for humans, characterizing the colors
of an object may be an ambiguous task. We illustrate for
instance the example that led to the most disagreement be-
tween annotators in Fig. 18.

We compute the Pearson correlation between human de-
cisions and TIAM, the CLIP score, and the BLIP score. The
results are reported in Tab. 4. TIAM exhibits a significantly
stronger correlation with human judgments compared with
other metrics. We have a similar conclusion if the alignment
is estimated with the Spearman’rank correlation (Tab. 5).

Lastly, we would like to emphasize that TIAM captures
the model’s success rate more comprehensibly in contrast
to other automatic similarity scores. While CLIP and BLIP
can serve to compare two generative models (e.g. evaluate
models based on their CLIP score) their inherent meaning
is limited. We note also that CLIP has a poor compositional
understanding, limiting a precise evaluation of text-image
alignment [21]. In addition, TIAM enables the analysis of
specific modalities, yielding insightful outcomes such as the

8https://huggingface.co/openai/clip-vit-base-patch32
9https://huggingface.co/Salesforce/blip-itm-base-coco

Figure 18. “A photo of a blue giraffe” generated with IF. The
human annotators had quite low agreement on the alignment of
this image with the prompt.

Score C +O C O

CLIP 0.47p=6×10−3 0.22p=4×10−1 0.62p=1×10−2

BLIP 0.67p=3×10−5 0.48p=6×10−2 0.77p=5×10−4

TIAM 0.82p=7×10−9 0.70p=2×10−3 0.98p=2×10−11

Table 4. Pearson correlation between human decisions and
TIAM/BLIP/CLIP. C + O stands for the correlation without dis-
tinction of the series. p is the p-value for the null hypothesis H0:
the distributions underlying the samples are uncorrelated, the al-
ternative hypothesis is the correlation is non zero.

success rate per seed and the proportion of apparition of an
object according to its position in the prompt.

https://huggingface.co/openai/clip-vit-base-patch32
https://huggingface.co/Salesforce/blip-itm-base-coco


Score C +O C O

CLIP 0.50p=2×10−3 0.39p=7×10−2 0.53p=2×10−02

BLIP 0.38p=2×10−2 0.06p=4×10−1 0.64p=4×10−3

TIAM 0.82p=1×10−4 0.77p=1×10−3 0.87p=2×10−4

Table 5. Spearman correlation between human decisions and
TIAM/BLIP/CLIP. C + O stands for the correlation without dis-
tinction of the series. p is the p-value for the permutation test.

12. Scalability of TIAM
In this section, we initially address strategies to manage

the potential growing complexity inherent in the template
approach. Subsequently, we explore methods to go beyond
the limited set of COCO labels.

12.1. Scalability

The template approach can become cumbersome when
dealing with multiple modalities (e.g. exploring a prompt
template with 5 objects using 30 different objects (′| = 30)
leads to 17 100 720 prompts).

To alleviate this complexity, we can adopt a sampling
approach, consisting of randomly drawing a defined num-
ber of prompts to estimate the results (e.g. TIAM score, the
proportion of occurrence of the object according to its po-
sition in the template, . . . ). We conducted such a study on
several experiments reported in the paper : (A) the prompts
with 2 objects created with the combination of 24 COCO
labels (Section 4.1), (B) the prompts with 2 objects created
with the combination of 28 COCO labels (Section 4.3, part
on the semantic link), and (C) the prompts with 2 objects
and associated attribute (Section 4.4).

Using all generated prompts, at each step, we draw
(without replacement) n prompts and we compute the re-
sults from these samples. We start with 50 prompts and in-
crease n up to the maximum number (all possible prompts)
by a step of 2 (thus using 52, 54, 56... samples). We made
this for each model used for the respective experiments. For
(A) and (B) we report the TIAM score, the proportion of oc-
currences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed,
for (C) we report the TIAM score, the proportion of occur-
rences of each object based on its position in the prompt
and the success rate of color attribution w.r.t the detected
objects. Hence we report below the results for:

• SD 1-4 (A) Fig. 19 (B) Fig. 25 (C) Fig. 29,

• SD 1.4 A&E (A) Fig. 20 (C) Fig. 30,

• SD 2 (A) Fig. 21 (B) Fig. 26 (C) Fig. 31,

• SD 2 A&E (A) Fig. 22 (C) Fig. 32,

• IF (A) Fig. 23 (B) Fig. 27 (C) Fig. 33,

• unCLIP (A) Fig. 24 (B) Fig. 28 (C) Fig. 34.

Across all our findings, a marked trend emerges from
around 300 prompts, indicating the viability of employing
a sampling method to approximate the results presented in
the main study and alleviate the complexity of the template-
based approach of TIAM in practice.

In addition, modal-specific studies can be conducted.
For instance, to study certain modalities, we can imag-
ine isolating each modality for individual scrutiny such as
defining a few potential objects, but above all varying the
modality we wish to study. This approach was applied to the
attribute binding in Section 4.4 by reducing the number of
objects studied and prioritizing the exploration of attribute
binding.

Finally, we would like to emphasize that, when exploring
semantic links comprehensively, it is essential to test the
effect of each word placed together (Section 4.3).

12.2. TIAM with other labels

TIAM does not depend on the COCO labels and can be
applied to other labels as long as we have a detector ca-
pable of detecting the desired studied labels. Indeed, TIAM
can be implemented with any other detection model, trained
on other labels, to evaluate the prompt-image alignment of
the T2I models. In particular, the open-vocabulary detec-
tion models field has emerged (e.g. for detection [6, 13, 20]
segmentation [5,11]) presenting itself as a robust contender
for surpassing the limitations imposed by constrained label
sets.

12.3. TIAM with other attributes

See Section 3 of the Supplementary Material for a dis-
cussion on how to consider other attributes than colors, such
as size or texture.



100 200 300 400 500
Number of prompts randomly drawn

0.36

0.38

0.40

0.42

0.44

0.46

0.48

TI
AM

TIAM score as a function of the number of prompts in the sample
TIAM score
TIAM score
considering all prompts

100 200 300 400 500
Number of prompts randomly drawn

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
op

or
tio

n 
of

 o
bj

ec
ts

 in
 im

ag
es

Proportion of occurences of each object based on its position in the prompt
as a function of the number of prompts in the sample

o1
o2
o1 proportion
considering all prompts
o2 proportion
considering all prompts

100 200 300 400 500
Number of prompts randomly drawn

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

TI
AM

q0.25

q0.5
q0.75

q0.05

q0.95

Quantiles of TIAM score aggregated per seed
as a function of the number of prompts in the sample

q0.25
q0.75
q0.5
q0.05
q0.95
q0.05, 0.25, 0.5, 0.75, 0.95
considering all prompts

Figure 19. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 1.4, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 20. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 1.4 A&E, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 21. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 2, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 22. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 2 A&E, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 23. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for IF, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 24. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for the unCLIP, using the prompts with 2 objects created with the combination of 24 COCO labels (Section 4.1).
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Figure 25. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 1.4, using the prompts with 2 objects created with the combination of 28 COCO labels (Section 4.3, part on the semantic link).
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Figure 26. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for SD 2, using the prompts with 2 objects created with the combination of 28 COCO labels (Section 4.3, part on the semantic link).



100 200 300 400 500 600 700
Number of prompts randomly drawn

0.58

0.60

0.62

0.64

0.66

0.68

0.70

TI
AM

TIAM score as a function of the number of prompts in the sample
TIAM score
TIAM score
considering all prompts

100 200 300 400 500 600 700
Number of prompts randomly drawn

0.70

0.75

0.80

0.85

0.90

Pr
op

or
tio

n 
of

 o
bj

ec
ts

 in
 im

ag
es

Proportion of occurences of each object based on its position in the prompt
as a function of the number of prompts in the sample

o1
o2
o1 proportion
considering all prompts
o2 proportion
considering all prompts

100 200 300 400 500 600 700
Number of prompts randomly drawn

0.50

0.55

0.60

0.65

0.70

0.75

TI
AM q0.25

q0.5
q0.75

q0.05

q0.95

Quantiles of TIAM score aggregated per seed
as a function of the number of prompts in the sample

q0.25
q0.75
q0.5
q0.05
q0.95
q0.05, 0.25, 0.5, 0.75, 0.95
considering all prompts

Figure 27. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for IF, using the prompts with 2 objects created with the combination of 28 COCO labels (Section 4.3, part on the semantic link).
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Figure 28. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the quantiles of the TIAM score aggregated per seed as a function of the number of prompts randomly drawn to compute the results,
for unCLIP, using the prompts with 2 objects created with the combination of 28 COCO labels (Section 4.3, part on the semantic link).
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Figure 29. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for SD 1.4, using the prompts with 2 objects and associated attribute (Section 4.4).
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Figure 30. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for SD 1.4 A&E, using the prompts with 2 objects and associated attribute (Section 4.4).
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Figure 31. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for SD 2, using the prompts with 2 objects and associated attribute (Section 4.4).
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Figure 32. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for SD 2 A&E, using the prompts with 2 objects and associated attribute (Section 4.4).
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Figure 33. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for IF, using the prompts with 2 objects and associated attribute (Section 4.4).
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Figure 34. Evolution of, respectively, the TIAM score, the proportion of occurrences of each object based on its position in the prompt,
and the success rate of color attribution w.r.t the detected objects as a function of the number of prompts randomly drawn to compute the
results, for unCLIP, using the prompts with 2 objects and associated attribute (Section 4.4).
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