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Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 05:095 05 075 S M L

MIST [3] w/ EM 8.5 179 73 3.0 94 14.9
+ SIAMESE-ONLY 8.8 187 73 29 96 15.4
+ DEPTH-OICR-ALT 89 190 73 3.0 9.6 15.6
+ DEPTH-OICR 9.0 194 73 3.1 9.6 159
+ DEPTH-ATTENTION-ALT 9.0 188 7.7 3.0 9.5 16.0
+ DEPTH-ATTENTION 9.1 190 79 3.0 95 16.2

Table S.1. This table introduces the comparison of the pro-
posed and alternate approaches (DEPTH-OICR-ALT and DEPTH-
ATTENTION-ALT) for modeling depth priors. All proposed meth-
ods that outperform the SIAMESE-ONLY are underlined.

S.1. Alternative approach for depth priors

In Sec. 3.3, we described our method to obtain depth
priors leveraging generated bounding box predictions and
associated captions to extract knowledge about the relative
depths of objects. As an alternative, we use only bounding
box predictions (without captions) to obtain depth priors.

Similar to Sec. 3.3, let C be the set of object categories,
and B be the set of predicted bounding boxes. Let d.; €
[0, 1] denote the depth value for object ¢ € C' and box b €
B. Further, d. represents a set of depth values for each c.
The depth range r. = [mean— std, mean+ std] is obtained
by utilizing the mean and standard deviation (std) of this set
of depth values in d..

Table S.1 demonstrates that the DEPTH-OICR-ALT
and DEPTH-ATTENTION-ALT techniques, employed from
the alternate approach, yield superior results compared
to SIAMESE-ONLY.  Nevertheless, the DEPTH-OICR
and DEPTH-ATTENTION methods, derived from the pro-
posed approach, outperform both DEPTH-OICR-ALT and
DEPTH-ATTENTION-ALT. Note that the depth range r,
remains consistent across all images in this alternative
method. Conversely, in the proposed approach, the depth
range dr. is computed individually for each image by tak-
ing into account the corresponding caption, as visualized in
Figure 3 of the paper. As a result, the proposed approach
demonstrates enhanced capacity in modeling depth priors

Avg. Precision, IoU Avg. Precision, Area

Methods on COCO 0.5:095 05 075 S M L
MIST [3] 11.8 243 107 3.6 132 18.9
+ WSOD-AMPLIFIER (Ours) 13.8 278 125 4.6 14.8 22.6

+ WSOD-AMPLIFIER-DEPTH 4.4 87 38 06 35 8.8
+ WSOD-AMPLIFIER-FUSION 13.1 275 119 43 143 222

Table S.2. This table compares the different variations of our
WSsoD-AMPLIFIER method during inference. The best performer
per column is in bold.

through the utilization of captions.

S.2. Depth modality in inference

As detailed in Section 3.2, fusion scores (f%°* and f¢*)
are calculated by adding together RGB scores (v%¢* and
v°®) and depth scores (d?* and d**) in Eq. 5. Then, fusion
scores are used to compute multiple instance learning loss
Lmi in Eq. 9 to derive region-level scores during training.
However, our proposed method uses only RGB detection
v and classification v* scores during inference.

The performance of WSOD-AMPLIFIER-DEPTH, which
relies solely on depth scores during inference, is poorer
due to the relatively lower informativeness of depth im-
ages compared to RGB images for detection in Table S.2.
On the other hand, WSOD- AMPLIFIER-FUSION, which em-
ploys fusion scores, exhibits lower performance than our
proposed approach, WSOD-AMPLIFIER, which solely em-
ploys RGB scores during inference. The rationale behind
the enhancement of results through fusion during training,
while not during inference, stems from the nature of the
MIL loss L,,;;. This loss function is formulated to guide the
model in the classification of objects in an image, indirectly
yielding region-level detection scores. While training, in-
accuracies in depth for certain regions can be compensated
by other regions to classify objects in MIL loss. However,
during inference, each region operates independently, and
errors on a per-region basis more directly impact detection
results. Further, [2] demonstrates that integrating the depth
modality with RGB aids in enhancing the model’s perfor-



mance in classification tasks. The improved classification
capacity of our model consequently leads to enhanced ben-
efits from the MIL loss, contributing to improved represen-
tation learning. This improvement is highlighted by the en-
hanced performance of RGB scores during inference.

S.3. Class-wise comparison on COCO

Figure S.2 demonstrates the effectiveness of depth pri-
ors in capturing the depth characteristics of different object
classes in the COCO dataset. On average across classes,
a substantial portion of the training data (80.75%), resides
within the constant ranges r. in the figure. Note the depth
ranges dr. in our proposed approach for depth priors are
computed separately for each image according to the corre-
sponding caption. This image-specific calculation achieves
more comprehensive coverage of depth variations within
the training data compared to constant ranges r.. Diverse
object classes exhibit distinct depth ranges. The “fire hy-
drant” object displays the smallest average depth mean at
19%, whereas the “kite” object displays the highest (54%).

S.4. Scalability and generalization

Our demonstration reveals that a substantial amount of
data is not necessary for estimating depth. The depth priors
calculated from the least frequent classes contribute even
more to performance improvement than those from the most
frequent classes. Referring to the data presented in Table
S.3, the average increase in m A Ps.g5 for the least frequent
20% classes is 3.4, while the increase for the most frequent
20% classes is 0.8.

To understand the impact of diverse depth ranges on per-
formance, Table S.3 includes per-class standard deviations
(STD). Notably, the depth priors computed from classes
with smaller STDs make a more significant contribution
to performance enhancement compared to those with larger
STDs. On average, the m A Psq.95 increase for the 20% of
classes with the smallest STD is 4.8, whereas the increase
for the 20% of classes with larger STDs is 1.2. The ob-
servation suggests that a narrower depth distribution of an
object corresponds to more informative depth information.
Certainly, objects like “bear,” train,” and “giraffe” exhibit
smaller STDs, thereby leading to a more significant im-
provement in detection performance. Additionally, respec-
tive percentages of objects in Figure S.2, which depict the
proportion of training data within the specified depth range,
are notably higher at 89%, 90%, and 88%, respectively.

Our analysis demonstrates that depth priors calculated
using COCO exhibit similarities to those computed using
PASCAL, as evident from Figure S.3. On an average basis
across various classes, approximately 84.4% of data aligns
within the constant ranges derived from PASCAL, whereas
82.3% aligns within the ranges from COCO. The mini-

Objects # of Instances STD MIST [3]w/ EM  + WSOD-AMPLIFIER
Bear 902 15 19.9 36.6 (+16.7)
Toilet 2860 17 4.7 20.3 (+15.6)
Train 3157 15 14.3 26.3 (+12.0)
TV 4031 18 11.3 19.2 (+7.9)
Giraffe 3593 14 8.0 13.6 (+5.6)
Zebra 3653 16 224 27.9 (+5.5)
Airplane 3823 15 28.7 33.9 (+5.2)
Elephant 3876 14 26.4 31.1 (+4.7)
Refrigerator 1872 16 8.8 13.5 (+4.7)
Cat 3298 17 7.8 11.8 (+4.0)
Pizza 3993 17 322 359 (+3.7)
Horse 4645 15 21.5 25.1 (+3.6)
Fire hydrant 1313 15 24.8 28.4 (+3.6)
Sheep 6442 16 11.3 14.5 (+3.2)
Cow 5588 16 19.7 22.8 (+3.1)
Dog 3764 16 8.7 11.7 (+3)
Truck 7043 17 9.7 12.6 (+2.9)
Cake 4508 15 6.2 9.0 (+2.8)
Parking meter 833 14 23.7 264 (+2.7)
Sandwich 3069 15 8.0 10.6 (+2.6)
Bird 7100 19 8.8 11.3 (+2.5)
Kite 6333 17 11.2 13.6 (+2.4)
Carrot 5463 18 1.7 4.0 (+2.3)
Broccoli 4894 18 5.3 7.6 (+2.3)
Clock 4310 18 13.0 15.3 (+2.3)
Motorcycle 5971 15 154 17.5 (+2.1)
Tennis racket 3397 16 1.7 3.7 (+2.0)
Keyboard 1978 18 1.4 3.3 (+1.9)
Donut 4854 17 12.3 14.0 (+1.7)
Cell phone 4449 17 11.5 13.1 (+1.6)
Apple 4244 17 5.0 6.5 (+1.5)
Car 30530 18 6.1 7.6 (+1.5)
Banana 6698 17 5.6 7.1 (+1.5)
Chair 26825 16 1.5 2.8 (+1.3)
Hot dog 1997 14 7.8 9.0 (+1.2)
Umbrella 7729 17 6.9 8.1(+1.2)
Wine glass 5559 18 0.4 1.5 (+1.1)
Sink 3929 17 0.1 1.2 (+1.1)
Bench 6739 18 6.1 7.0 (+0.9)
Microwave 1188 18 0.8 1.6 (+0.8)
Bed 2903 12 27.6 28.4 (+0.8)
Vase 4593 17 0.7 1.4 (+0.7)
Bowl 10020 19 11.7 12.4 (+0.7)
Bus 4317 16 355 36.2 (+0.7)
Laptop 3406 17 30.2 30.8 (+0.6)
Bottle 16782 21 4.6 5.2 (+0.6)
Boat 7449 17 4.2 4.7 (+0.5)
Bicycle 4912 18 9.8 10.3 (+0.5)
Teddy bear 3397 17 17.6 17.9 (+0.3)
Cup 14454 20 38 4.0 (+0.2)
Snowboard 1956 16 0.0 0.2 (+0.2)
Surfboard 4133 15 0.2 0.4 (+0.2)
Stop sign 1372 16 48.0 48.2 (+0.2)
Couch 4111 16 1.2 1.3 (+0.1)
Book 16826 21 0.1 0.2 (+0.1)
Scissors 1059 19 0.1 0.1
Skis 4683 14 0.1 0.0 (-0.1)
Suitcase 4188 15 3.8 3.6 (-0.2)
Person 181524 19 1.4 1.0 (-0.4)
Traffic light 9115 17 59 4.7(-1.2)
Frisbee 1861 17 6.8 4.8 (-2.0)
Orange 4525 18 13.1 10.6 (-2.5)
Oven 2302 19 9.7 5.7 (-4.0)
Total 597245 15 8.5 10.2 (+1.7)

Table S.3. The table provides class-wise mAPsg.95 results for
both MIST [3] with EM and our WSOD-AMPLIFIER. The objects
are sorted according to the change in performance. Additionally,
the table provides information about the standard deviation (STD)
and the number of instances within the training set. Note that 17
object categories from the COCO dataset have been excluded from
this table due to both methods yielding a m AP of zero.



Methods Clipart Watercolor Comic
MIST [3] w/ GT 9.4 133 9.2
+ WSOD-AMPLIFIER  10.2 14.7 9.6

Table S.4. This table introduces the improvement of our WSOD-
AMPLIFIER over MIST on domain shift datasets. The results are
in mAPso metric. The best performer per column is in bold.

mal differences in percentage and the visual resemblance of
depth ranges in Figure S.3 underscore the generalizability of
our depth priors. Furthermore, we mention in Sec. 4.3 that
applying the depth priors calculated from COCO to Con-
ceptual Captions (CC) results in a more significant perfor-
mance improvement on the noisy CC compared to COCO,
even though priors are computed from COCO.

S.5. Generalization to appearance changes

By relying on depth information, our method builds
some robustness to overfitting to appearance, which may
not be the same across datasets. To test this hypothesis,
we conduct experiments with domain shift datasets [1]. Ta-
ble S.4 shows that our WSOD-AMPLIFIER boosts the per-
formance of MIST baseline in mAPsg by 4 — 10%, even
though no training is performed on these datasets.

S.6. Illustration to depth ranges with caption

The depth range dr. for class c is individually computed
for each image by leveraging the corresponding caption. In
this context, r. ,, denotes the depth range of class ¢ when
linked to the word w. In Eq. 10, the calculation of dr,
involves deriving the average of depth ranges r. ., across
each word present within the caption. Figure S.1 illustrates
three object examples: “’kite”, "TV”, and “zebra”. The top
row of images depicts instances where objects are situated
farther away from the camera, while the bottom row show-
cases examples where objects are positioned closer to the
camera. As an illustration, consider the “kite” object in the
upper image, where the caption features the word “ocean.”
Due to the influence of 7y;te occan, the depth range dryte
becomes larger. It’s reasonable to expect that a kite would
be positioned at a greater distance from the camera if it’s
flying over an ocean. Worth noting is that while dry;;. is
enlarged, it remains smaller than 7y;s¢ oceqan due to the aver-
aging effect with less descriptive words like “is.” In a sim-
ilar scenario, the depth range dry;¢ in the lower image be-
comes smaller due to the impact of ryite holding. When a
person holds a kite, the likelihood is that the kite is posi-
tioned closer to the camera.

S.7. Failure cases

In Figure S.4, the initial three cases depict objects with
smaller depth values lying outside the depth range, while
the last two cases feature objects with larger depth values.
In the second scenario, the car is positioned closer to the
camera, causing it to exceed the depth range limits. In con-
trast, in the fourth scenario, the broccoli is situated in the
background with a larger depth value.



pa = 0.89

A man is kite surfing on the ocean waves. A group of people watching tv in a house Two zebras walking in their cage
driite = [0.53,0.91] dry, = [0.34,0.78] drsebra = [0.17,0.49]
Tkite,ocean = |0.63,0.95] Tty group = |0.36,0.82] T sebra,their = [0.21, 0.51]

A man in a trenchcoat holding a kite Alarge wall with a small tv on it A zebra eating grass in a field
driite = [0.40,0.84] dry, = [0.24,0.70] drsebra = [0.13,0.42]
Tkite,hold = [031, 081] Ttv,wall = [023, 067] Tzebra,eat = [011,039}

Figure S.1. This figure provides an intuitive understanding of how the utilization of captions enhances the estimation of the depth range
dr. of class c for a specific image. Here, ..., signifies the depth range of class ¢ when it is associated with the word w.
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Figure S.2. This figure illustrates how depth priors effectively capture depth characteristics across various object classes within the COCO
dataset. In this visualization, points colored in blue indicate the depths of samples in the training set associated with the designated class.
Points colored in red denote the mean of depth range, and green points mark the boundaries of the range. The percentages located on the
right side of class names provide insight into the proportion of training data falling within the defined depth range.
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Figure S.3. This figure demonstrates the effectiveness of depth priors, computed using the COCO dataset on the left and computed using
the PASCAL dataset on the right, in capturing the depth characteristics across different object classes in the PASCAL dataset.



pa = 0.15
drsuitcase = [0.10,0.51] drear = [0.23,0.63] AT person = [0.23,0.63] drbroccoi = [0.11,0.49] drskateboara = [0-10,0.44]

Figure S.4. This figure illustrates the failure cases where the depth value p, of objects lies outside the depth range dr..
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