Reducing the Side-Effects of Oscillations in Training
of Quantized YOLO Networks
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Here, we provide additional experimental results and analysis. First, we provide a comparison between vanilla baseline
methods and results using QC on the baselines on YOLO5 and YOLO7. Later, we also provide ablation studies of various
setups of QC and show the stability of EMA for the decay parameter («).

1. Comparisons with vanilla baselines and QC based baselines

Table 1. Comparison between LSQ [ /], Oscillation dampening [2], and our proposed method after performing our QC for quantization-
aware training using mAP metric for object detection task on the COCO dataset.

Method Ours (QC)  #-bit YOLO5-n YOLOS5-s YOLO7-tiny
Full-Precision - 32-bit 28.0 37.4 37.5
tsoll] X 20.6 324 32.9
Q v 226 333 34.1
, X A-bit 215 32.9 335
Osc. Dampening [7] v/ 23.1 33.4 34.3
X 2.1 33.1 34.6
Ours (EMA) / 23.8 34.0 35.2
Lsoll] X 152 272 284
Q v 17.1 294 302
. X 3-bit 16.4 275 292
Osc. Dampening [7] v 17.9 296 305
X 16.4 285 30.3
Ours (EMA) v 18.2 30.2 31.0

Further, we also perform experiments to evaluate the effectiveness of QC on the baseline QAT methods such as LSQ [ 1] and
Oscillation dampening [2] on object detection task on COCO dataset and the results are reported in Table 1. Our QC approach
to correct the error induced due to oscillating weights and scale factors cannot only improve the detection performance
of quantized models of EMA but also the baseline methods. Despite that, our combined approach with both EMA and QC
outperforms all the baselines with QC consistently at 4-bit as well as 3-bit quantization on YOLO5 and YOLO7 variants.

2. Ablation on different QC setups

QC can correct the error induced due to oscillations after the quantization by employing the per-channel scale and shift
correction factors. These scale factors can also be chosen per-tensor. To evaluate the effectiveness of different components
of QC such as scale and shift correction factors, we provide ablation studies in Table 2. We also provide results on both
per-tensor and per-channel setup of QC. It is important to note that both scale and shift parameters are equally important
in both per-tensor and per-channel QC setup and neither alone can effectively reduce oscillation-based error. Also, even the
simple per-tensor setup of QC improves the EMA performance but as expected it cannot meet the performance achieved by
the per-channel QC setting.

3. Effect of varying decay factor in EMA

To check the stability of EMA to varying decay factors, we trained different 4-bit YOLOS5-n models using COCO datasets
and the comparisons are provided in Table 3. As shown, our EMA approach is quite stable to different decay parameters. EMA



Table 2. Ablation studies of different QC setups, where either per-tensor or per-channel correction is performed varying whether to use QC
scale or shift on YOLOS-n trained at 4-bit on COCO dataset.

QC Setup QC Scale Qc Shift mAP

v X 22.2
Per-tensor X v 22.3
v v 22.6
v X 23.5
Per-channel X v 23.6
v v 23.8

Table 3. Different values of decay parameter (&) in EMA for YOLOS5-n trained at 4-bit on COCO dataset. Note, EMA is quite stable with
respect to different decay parameters.

Decay parameter (o) mAP

0.0 20.6
0.9 21.5
0.99 22.1
0.999 221
0.9999 221

takes into into account &~ 1 — (1 — «) iterations to compute the average weights or scale factors. Typically, oscillations are
consistent over > 100 iterations, and taking an average of scale factors or weights over > 100 iterations works effectively in
mitigating the oscillation side-effects in the final QAT model.

4. Oscillation in scale factors with or without EMA

To show the effect of EMA on the quantization scale factors during the training, we also provide the plots for scale factors
during the last 4K iterations of training with or without EMA in Fig. 1 and Fig. 2 for scale factors of weights and activations
respectively. It can be seen that EMA leads to a smoother transition of quantization scale factors for both weights and
activations throughout the training and thus lead to stable training of quantized YOLO models.
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Figure 1. Effect of EMA on oscillation issue in YOLOS-n variant trained on COCO dataset at 4-bit precision using LSQ [/ ]. (a) Scale factors
for weight quantization in the vanilla model during the last 4K iterations of 2nd-5th conv layer, (b) Scale factors for weight quantization
in EMA model during the last 4K iterations of 2nd-5th conv layer. Here, it can be observed that EMA makes the quantization scale factors
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Figure 2. Effect of EMA on oscillation issue in YOLOS5-n variant trained on COCO dataset at 4-bit precision using LSQ [/]. (a) Scale
factors for activation quantization in the vanilla model during the last 4K iterations of 2nd-5th conv layer, (b) Scale factors for activation
quantization in EMA model during the last 4K iterations of 2nd-5th conv layer. Here, it can be observed that EMA makes the quantization
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