
Supplemental Material for "Deep Metric Learning with Chance Constraints"
Yeti Z. Gürbüz1 Oğul Can1, 2 A. Aydın Alatan3

1MetaDialog 2Cerebrate AI 3OGAM and METU

Figure 1. Illustration of our method (CCP) and the geometry of the embedding space in MNIST dataset: Boxes represent the converged
proxies, while circles represent the next proxies resulting from K-Center. (a) In proxy-based DML (before our method), proxies coalesce
into one. (b) With CCP (through iterations 1-4), diverse proxies are obtained, resulting in a reduced covering radius.

Figure 2. The geometry of the embedding space before, (a), and after, (b), our method (through iterations 1-3), relating how the generalization
efforts in training domain transfer to the geometry of test domain on CUB dataset with C2-CCP. We use 2D TSNE embeddings of the
validation data in the visualization, in which we report MAP@R, average covering radius and average inter-class pairwise distances.

1

Table 1. Evaluation on SOP and In-shop for the retrieval task. Red: the overall best. Bold: the loss specific best.

SOP In-shop

512D 128D 512D 128D

Method P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R

C1 [4] 68.84 43.28 40.25 64.96 39.68 36.54 80.12 53.11 50.15 76.08 49.61 46.51
C1-XBM-L [18] 78.68 54.66 51.82 75.37 49.95 47.39 88.39 61.33 58.64 85.75 58.13 55.37

C1-CCP-L 79.53 55.11 52.73 76.24 50.07 48.07 88.52 62.54 59.67 85.50 58.51 55.56

C2 [19] 74.87 49.88 46.94 71.15 45.77 42.66 86.32 62.36 59.42 83.04 58.27 55.13
C2-XBM-L [18] 76.66 51.91 49.04 73.47 48.18 45.15 87.66 63.50 60.64 84.58 59.78 56.75

C2-CCP-L 78.95 55.01 52.19 75.92 51.14 48.18 88.52 63.94 61.07 86.11 60.16 57.24

MS [17] 72.74 47.07 44.10 68.96 43.25 40.18 88.37 63.53 60.65 85.39 59.65 56.61
MS-CCP-L 78.96 54.71 51.85 75.80 50.48 47.97 90.24 66.31 63.59 87.10 61.74 59.15

Triplet [13] 75.40 50.13 47.03 70.41 44.32 41.03 86.71 63.81 60.60 82.58 58.74 55.25
Triplet-CCP-L 77.09 52.42 49.33 72.21 46.38 43.11 89.44 67.23 64.28 86.00 62.24 59.04

ProxyAnchor [5] 77.10 51.95 49.01 73.86 47.94 44.89 88.08 60.91 58.09 85.87 57.80 54.95
ProxyNCA++ [14] 76.07 51.17 48.20 72.89 47.47 44.44 87.33 60.33 57.48 84.79 57.33 54.42
SoftTriple-S [11] 78.48 53.68 50.77 74.66 48.79 45.75 88.37 62.56 59.56 85.71 58.74 55.68

HPL-PA [21] 76.97 51.97 49.07 73.84 48.10 45.11 - - - - - -

Table 2. Evaluation on SOP and In-shop for the retrieval task. Red: the overall best. Bold: the loss specific best.

CUB Cars196

512D 128D 512D 128D

Method P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R P@1 P@R MAP@R

C1 [4] 63.67 33.77 23.08 56.21 29.65 19.06 77.75 33.69 23.50 64.17 26.50 16.13
C1-XBM-L [18] 65.40 35.57 24.87 57.57 30.42 19.84 83.68 37.74 27.93 72.13 28.55 18.83

C1-CCP-L 68.11 37.85 27.11 59.56 32.06 21.27 83.76 37.78 28.32 72.05 28.74 18.96

C2 [19] 67.49 37.18 26.47 59.73 31.86 21.01 81.04 34.97 24.73 69.17 27.70 17.22
C2-XBM-L [18] 68.62 37.53 26.83 60.18 32.25 21.41 82.40 36.07 25.99 70.01 28.49 18.01

C2-CCP-L 69.73 38.69 28.02 62.39 33.49 22.67 82.89 36.27 26.27 72.16 28.98 18.52

MS [17] 64.65 34.84 24.15 57.24 30.29 19.64 80.88 36.45 26.23 69.27 28.93 18.25
MS-CCP-L 68.84 38.19 27.44 61.10 33.23 22.40 86.26 38.97 29.14 74.97 30.44 19.85

Triplet [13] 64.01 34.55 23.43 55.51 29.38 18.51 78.44 33.83 23.11 64.57 26.52 15.68
Triplet-CCP-L 65.36 35.42 24.53 56.65 30.17 19.31 81.84 35.61 25.21 68.75 28.21 17.43

ProxyAnchor [5] 68.43 37.36 26.53 60.61 32.36 21.48 85.29 37.53 27.73 75.79 29.91 19.56
ProxyNCA++ [14] 65.48 35.60 24.85 58.49 31.73 20.96 82.87 36.56 26.34 72.45 29.91 19.32
SoftTriple-L [11] 68.12 36.98 26.02 57.94 30.63 19.86 84.90 37.69 27.80 73.16 29.60 19.18

HPL-PA [21] 68.25 37.57 26.72 61.31 32.81 21.90 86.84 38.36 28.67 76.12 30.13 19.83

1. Extended Empirical Study for DML
1.1. Fair (MLRC) Evaluation on DML Benchmarks

We follow the procedures proposed in [9] to provide fair
and unbiased evaluation of our method. We provide the full
experimental setup details in § 2.1. The evaluation results
that are summarized in Fig. 3 in the main paper are tabulated
in Tables 1 and 2, which demonstrate the clear superior-
ity of our method, particularly when considering the Mean
Average Precision at R (MAP@R) metric.

We should recapitulate that Precision at 1 (P@1), or Re-
call at 1 (R@1), is a myopic metric for assessing the quality
of the embedding space geometry [9]. Therefore, solely im-
proving P@1 does not necessarily reflect the true order of
improvements brought by different methods. As observed
in Tables 1 and 2, methods with similar P@1 (R@1) perfor-
mances can exhibit more significant differences in MAP@R.
Consequently, we firmly believe that comparing MAP@R,
rather than P@1 alone, technically provides a more accurate
representation of the improvements achieved by our method.

2

1.2. Further Ablations

Effect of CCP in test domain. Our proof of the concept
study in MNIST dataset (Fig. 1) empirically shows the impli-
cations of our formulation in training domain. It is important
to show how such efforts in the training domain are reflected
in the test domain since metric learning is expected to be
generalized to new classes. We further provide the visual-
ization of the validation data in CUB dataset in Fig. 2. We
compute covering radii for 1 to n sample case in k-Center.
Namely, we take k samples with minimum cover for k ∈ [n]
where n is the number of samples per class. We then take the
average of these radii to compute a representative metric for
the covering radius. We observe that solving single proxy-
based DML results in relatively poor generalization in the
test domain. On the contrary, solving the problem as the set
intersection problem with alternating projections improves
the embedding geometry (reduced radius without decreased
inter-class pairwise distances).

Hyperparameter search. Our CCP framework intro-
duces 3 additional hyperparameters to a typical DML prob-
lem, which are λ: regularization weight for the projection
objective, #proxy: number of proxies per class, and b: pool
size for proxy selection in k-Center method. Among those,
the selection of #proxy and b is rather resource dependent
and even the setting (#proxy = 1, b = 1) brings perfor-
mance improvements as we empirically show in Figs. 4 and
5. We expect such a behaviour since CCP mechanism is able
to increase the number of proxies inherently. On the other
hand, we must analyze the behaviour of CCP with respect
to λ in order to suggest a proper operation range. To this
end, we perform Bayesian search on the λ-#proxy space
by fixing b = 16 to see the joint effect of two in CUB with
C2-CCP. We provide the results in Fig. 3. We observe that

Figure 3. Bayesian search on λ-#proxy space

absence of λ degrades the performance. Similarly, large
values of λ causes over-regularization. We obtain interval of
[1091, 1095] that works well for λ.

For the number of proxies, we observe increasing the
proxy per class improves performance. On the other hand,
the increase saturates as it can also be observed from Fig. 5.
As the result of Bayesian parameter search, we take λ=2 ·
1094 and #proxy=8 with pool size b=12 in our evaluations
against other methods for CUB and Cars. For SOP and In-
shop, we reduce #proxy=4 and b=7 owing to relatively less
number of samples per class in the dataset.

Effect of batch size. Batch size plays important role in
DML methods to perform well. Therefore, we analyze the
robustness to the batch size especially for the cases where
increasing the batch size is prohibitive. We train baseline
contrastive loss and CCP contrastive loss for the batch sizes
of 16, 32, 64 and 128. The training setup is the same as in
the state-of-the-art comparison (§ 2.1). In each batch we
use 4 samples per class. We provide the results in Fig. 4.
We observe that baseline contrastive loss has increasing per-
formance as the batch size increases whereas our method’s
performance with small batch size is on par with the large
batch size. Thus, CPP has reduced batch size complexity.

Figure 4. Analysis of batch size dependence of the performance on
CUB (left) and Cars (right) dataset with C2-CCP.

Computational analysis. Our method outlined in Algo-
rithm 1 puts marginal computation and memory overhead
on top of the baseline approaches.

For the computation, we have proxy initialization and
weight update steps at the beginning of the each problem
instance. In overall, in our system with RTX 2080 Ti GPU
and i7 CPU, that additional computation adds on the av-
erage 5-10 ms per step (batch update). In particular, for
batch size of 32, we typically have rate of 105 ms/batch
with Contrastive-CCP whereas vanilla has 97 ms/batch rate.
In In-shop and SOP dataset, we have the same rates how-
ever for CCP, we have 200 to 400 ms computation overhead
due to sampling for proxy initialization. We do not have
such overhead in Cars and CUB owing to the much less
number of classes. With that being said, we have such
400 ms overhead in In-shop and SOP only at the begin-

3

ning of new problem instance, which has no significant

Table 3. Total steps of training in
SOP and In-shop

Method SOP In-shop

C2 62K 114K
C2-XBM 81K 93K
C2-CCP 69K 127K

MS 67K 98K
MS-CCP 91K 131K
Triplet 93K 73K

Triplet-CCP 124K 115K
ProxyAnchor 54K 87K
ProxyNCA++ 88K 103K

SoftTriple 48K 82K

effect in long run
thanks to rather infre-
quent happening of
proxy re-initialization.
Due to alternating
problems, our method
takes more steps to
converge than their
baseline counterparts.
We provide the op-
timization steps per
proxy-based problem
instance for several
losses in Fig. 4 from
which relative convergence can be compared owing to each
problem instance being a proxy-based method. Nevertheless,
we also provide Tab. 3 to compare the convergence of
the methods for SOP and In-shop datasets. The reported
numbers are the rounded averages of the 4 models. We
observe 10%-35% increase in the optimization steps for the
pairwise losses.

For the memory, we store the weighs of the previously
converged model in the memory as well as the variables for
proxies. For the model, approximately 40-45 mb additional
GPU memory is used and for the proxies 16.6 mb and 5.9
mb memory is used in SOP and In-shop dataset (75 kb in
CUB and Cars).

In summary, CCP brings ≈ 8% increase in back-
propagation computation time and only ≈ 60 MB increase
in memory for the largest model. CCP takes 10% 9 35%
more steps to converge than their baseline counterparts due
to alternating problems. On the other hand, our method
with small batch size performs on par with the large batch
size thanks to alternating proxies (Fig. 4). To this manner,
marginal increase in computation is seemingly a fair trade-
off in improving the performance along with robustness to
batch size.

2. Empirical Study Details
In the following sections, we outline the complete details

of our experimental setup, enabling easy reproducibility.
We use our own framework implemented in Tensorflow

[1] library in the experiments.
Fairness in evaluation. Independent works [2, 9, 12]

reveal that conventional training and evaluation procedures
in DML may fail to properly assess the true order of per-
formance that the methods bring. The consensus for unbi-
ased comparability is evaluation of the methods with their
best version under the same experimental settings unless
the compared methods demand any particular architecture
or experimental setup. Our empirical study is completely
aligned with the literature’s claims for unbiased evaluation.

Reproducibility. We provide full detail of our experi-
mental setup and recapitulate the implementation details for
the sake of complete transparency and reproducibility. Code
is available at: CCP-DML Framework

2.1. Experimental Setup

Datasets. We perform our experiments on 4 widely-used
benchmark datasets: Stanford Online Products (SOP) [10],
In-shop [8], Cars196 [7] and, CUB-200-2011 (CUB) [16].

SOP [10] has 22,634 classes with 120,053 product im-
ages. The first 11,318 classes (59,551 images) are split for
training and the other 11,316 (60,502 images) classes are
used for testing.

In-shop has 7,986 classes with 72,712 images. We use
3,997 classes with 25,882 images as the training set. For
the evaluation, we use 14,218 images of 3,985 classes as the
query and 12,612 images of 3,985 classes as the gallery set.

Cars196 contains 196 classes with 16,185 images. The
first 98 classes (8,054 images) are used for training and
remaining 98 classes (8,131 images) are reserved for testing.

CUB-200-2011 dataset consists of 200 classes with
11,788 images. The first 100 classes (5,864 images) are
split for training, the rest (5,924 images) is used for testing.

Training Splits. We split datasets into disjoint training,
validation and test sets according to [9]. In particular, we
partition 50%/50% for training and test, and further split train-
ing data to 4 partitions where 4 models are to be trained by
exploiting 1/4 as validation while training on 3/4. For the
ablation studies, we split training set into 3 splits instead of
1 and train a single model on the 2/3 of the set while using
1/3 for the validation.

Data augmentation follows [9]. During training, we
resize each image so that its shorter side has length 256,
then make a random crop between 40 and 256, and aspect
ratio between 3/4 and 4/3. We resize the resultant image to
227x227 and apply random horizontal flip with 50% proba-
bility. During evaluation, images are resized to 256 and then
center cropped to 227x227.

Evaluation metrics. We consider precision at 1 (P@1),
precision (P@R) and mean average precision (MAP@R) at
R where R is defined for each query1 and is the total number
of true references as the query. Among those, MAP@R
performance metric is shown to better reflect the geometry
of the embedding space and to be less noisy as the evaluation
metric [9]. Thus, we use MAP@R to monitor training.

P@1: Find the nearest reference to the query. The score
for that query is 1 if the reference is of the same class, 0
otherwise. Average over all queries gives P@1 metric.

P@R: For a query i, find Ri nearest references to
the query and let ri be the number of true references
in those Ri-neighbourhood. The score for that query is

1A query is an image for which similar images are to be retrieved, and
the references are the images in the database.

4

https://github.com/yetigurbuz/ccp-dml

P@Ri = ri/Ri. Average over all queries gives P@R metric,
i.e., P@R = 1

n

∑
i∈[n]

P@Ri, where n is the number of queries.

MAP@R: We define MAP@Ri :=
1
Ri

∑
j∈[Ri]

P (j) for a

query i, where P (j) = P@j if jth retrieval is correct or 0
otherwise. Average over all queries gives MAP@R metric,
i.e., MAP@R = 1

n

∑
i∈[n]

MAP@Ri, where n is the number

of queries.
Training procedure. For the optimization procedure, we

use Adam [6] optimizer for mini-batch gradient descent with
a mini-batch size of 32 (4 samples per class), 1095 learning
rate, 1094 weight decay, default moment parameters, β1=.9
and β2=.99. We evaluate validation MAP@R for every
25 steps of training in CUB and Cars196, for 250 steps
in SOP and In-shop. We stop training if no improvement
is observed for 60 steps and recover the parameters with
the best validation performance. Following [9], we train 4
models for each 3/4 partition of the train set. For the ablation
studies, we train a single model on the 2/3 partition.

Embedding vectors. Embedding dimension is fixed to
128. During training and evaluation, the embedding vectors
are L2 normalized using the transformation proposed in Sec-
tion 4.4. We follow the evaluation method proposed in [9]
and produce two results: i) Average performance (128 di-
mensional) of 4-fold models and ii) Ensemble performance
(concatenated 512 dimensional) of 4-fold models where the
embedding vector is obtained by concatenated 128D vectors
of the individual models.

Losses with CCP. We evaluate our method with C1-CCP:
Contrastive loss [3], C2-CCP: Contrastive loss with posi-
tive margin [19], MS-CCP: Multi-similarity (MS) loss [17],
Triplet-CCP: Triplet loss [13]. We should note that Prox-
yAnchor [5] is indeed proxy-based MS loss except for miss-
ing a margin term. Similarly, ProxyNCA [14] is log Σ exp-
approximation of proxy-based Triplet with hard negative
mining and for single proxy case SoftTriple [11] is equiva-
lent to ProxyNCA. Therefore, our experiments cover wide
range of the DML losses.

Compared methods. We compare our method against
proxy-based SoftTriple [11], ProxyAnchor [5] and Prox-
yNCA++ [14] methods as well as XBM [18].

Fairness. We note that like the compared methods (i.e.,
loss functions, proxy-based methods), our method’s improve-
ment claims do not demand any particular architecture or
experimental setup. Therefore, to evaluate the improvements
purely coming from the proposed ideas, we implemented
the best version of the compared methods in our framework
and evaluate on the same architecture and experimental set-
tings. In this manner, we stick to BN-Inception with global
average pooling architecture to directly compare our method
with the benchmarked losses in [9]. To eliminate any frame-
work related performance differences, we re-implemented

the methods within our framework and produce the consis-
tent results with [9]. Our experimental setting is fair and
unbiased since:
i) The compared methods are either invented loss functions
or proxy-based approaches, which do not demand a particu-
lar setting to show the effectiveness of the proposed ideas.
ii) We use the same experimental setting for each method
(e.g., image size, architecture, embedding size, batch size,
data augmentation).
iii) We implement and re-evaluate all the compared methods
on our framework (i.e., train and evaluate).
iv) We reproduce consistent results reported in [9] to elimi-
nate any framework related performance bias.
v) We use the same train and test split as the conventional
methods, but we do not exploit test data during training. We
use 1/4 split of train data for the validation set.

Hyperparameters. For the hyperparameter selection, we
exploit the recent work [9] that has performed parameter
search via Bayesian optimization on variety of losses. We
further experiment the suggested parameters from the orig-
inal papers and official implementations. We pick the best
performing parameters. We perform no further parameter
tuning for the loss parameters when applied to our method
to purely examine the effectiveness of our method.

C1: We adopted XBM’s official implementation for fair
comparison. We use 0.5 margin for all datasets.

C2: C2 has two parameters, (m+,m−): positive margin,
m+, and negative margin. We set (m+,m−) to (0, 0.3841),
(0.2652, 0.5409), (0.2858, 0.5130), (0.2858, 0.5130) for
CUB, Cars196, In-shop and SOP, respectively.

Triplet: We set its margin to 0.0961, 0.1190, 0.0451,
0.0451 for CUB, Cars196, In-shop and SOP, respectively.

MS: We set its parameters (α, β, λ) to (2, 40, 0.5),
(14.35, 75.83, 0.66), (8.49, 57.38, 0.41), (2, 40, 0.5) for
CUB, Cars196, In-shop and SOP, respectively.

ProxyAnchor: We set its two paremeters (δ, α) to
(0.1, 32) for all datasets. We use 1 sample per class in batch
setting (i.e., 32 classes with 1 samples per batch), we per-
form 1 epoch warm-up training of the embedding layer, and
we apply learning rate multiplier of 100 for the proxies.

ProxyNCA++: We set its temperature parameter to 0.1
for all datasets. We use 1 sample per class in batch setting
(i.e., 32 classes per batch), we perform 1 epoch warm-up
training of the embedding layer, and we apply learning rate
multiplier of 100 for the proxies during training.

SoftTriple: SoftTriple has 4 parameters λ, γ, τ , and δ. We
set (λ, γ, τ, δ) to (20, 0.1, 0.2, 0.01), (17.69, 19.18, 0.0669,
0.3588), (20, 0.1, 0.2, 0.01), (100, 47.9, 0.2, 0.3145) for
CUB, Cars196, In-shop and SOP, respectively. We use 1
sample per class in batch setting (i.e., 32 classes with 1 sam-
ples per batch), we perform 1 epoch warm-up training of the
embedding layer, and we apply learning rate multiplier of
100 for the proxies during training.

5

XBM: We evaluate XBM with C1 and C2 since in the orig-
inal paper, contrastive loss is reported to be the best perform-
ing baseline with XBM. We set the memory size of XBM
to the total number of proxies (i.e., proxy_per_class ×
#classes) to compare the methodology by disentangling
the effect of proxy number. With that being said, we also
evaluate XBM with the memory sizes suggested in the orig-
inal paper. In this manner we use two memory sizes for
XBM for each dataset: (S,L) where S and L denote the
number of batches in the memory. For CUB and Cars196,
CCP uses 1(8) proxies per class for S(L) . Thus, we set
(S,L) to (3, 25) for CUB and Cars196. For In-shop and
SOP, CCP uses 1(4) proxies per class for S(L). Thus, we
set (S,L) to (100, 400), (400, 1400) for In-shop and SOP,
respectively. We perform 1K steps of training with the base-
line loss prior to integrate XBM loss in order to ensure slow
drift assumption.

CCP: For the hyperparameters of our method, we use 8
proxies per class and λ=21094 for CUB and Cars datasets,
as the result of the parameter search; and use pool size, b=12,
for greedy k-Center method. We select pool size based on
our empirical studies on the effect pool size and number of
proxies. Due to computation limitations, we use 4 proxy per
class, λ=21094 and b= 7 for SOP and In-shop dataset. We
perform no warm-up or do not use learning rate multiplier
for the proxies.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: a
system for large-scale machine learning. In OSDI, volume 16,
pages 265–283, 2016. 4

[2] Istvan Fehervari, Avinash Ravichandran, and Srikar Ap-
palaraju. Unbiased evaluation of deep metric learning al-
gorithms. arXiv preprint arXiv:1911.12528, 2019. 4

[3] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimension-
ality reduction by learning an invariant mapping. In 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 2, pages 1735–1742.
IEEE, 2006. 5

[4] Junlin Hu, Jiwen Lu, and Yap-Peng Tan. Discriminative
deep metric learning for face verification in the wild. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 1875–1882, 2014. 2

[5] Sungyeon Kim, Dongwon Kim, Minsu Cho, and Suha Kwak.
Proxy anchor loss for deep metric learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3238–3247, 2020. 2, 5

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[7] Andreas Krause and Daniel Golovin. Submodular function
maximization. In Tractability: Practical Approaches to Hard

Problems, pages 71–104. Cambridge University Press, 2014.
4

[8] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou
Tang. Deepfashion: Powering robust clothes recognition and
retrieval with rich annotations. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
1096–1104, 2016. 4

[9] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. A metric
learning reality check. In European Conference on Computer
Vision, pages 681–699. Springer, 2020. 2, 4, 5

[10] Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio
Savarese. Deep metric learning via lifted structured feature
embedding. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016. 4

[11] Qi Qian, Lei Shang, Baigui Sun, Juhua Hu, Hao Li, and Rong
Jin. Softtriple loss: Deep metric learning without triplet sam-
pling. In The IEEE International Conference on Computer
Vision (ICCV), October 2019. 2, 5

[12] Karsten Roth, Timo Milbich, Samarth Sinha, Prateek Gupta,
Bjorn Ommer, and Joseph Paul Cohen. Revisiting train-
ing strategies and generalization performance in deep metric
learning. In International Conference on Machine Learning,
pages 8242–8252. PMLR, 2020. 4

[13] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
Facenet: A unified embedding for face recognition and clus-
tering. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 815–823, 2015. 2, 5

[14] Eu Wern Teh, Terrance DeVries, and Graham W Taylor. Prox-
ynca++: Revisiting and revitalizing proxy neighborhood com-
ponent analysis. In European Conference on Computer Vision
(ECCV). Springer, 2020. 2, 5

[15] Aad W Van Der Vaart, Aad van der Vaart, Adrianus Willem
van der Vaart, and Jon Wellner. Weak convergence and em-
pirical processes: with applications to statistics. Springer
Science & Business Media, 2013. 9

[16] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona,
and Serge Belongie. The caltech-ucsd birds-200-2011 dataset,
2011. 4

[17] Xun Wang, Xintong Han, Weilin Huang, Dengke Dong, and
Matthew R. Scott. Multi-similarity loss with general pair
weighting for deep metric learning. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June
2019. 2, 5

[18] Xun Wang, Haozhi Zhang, Weilin Huang, and Matthew R
Scott. Cross-batch memory for embedding learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6388–6397, 2020. 2, 5

[19] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp
Krahenbuhl. Sampling matters in deep embedding learning.
In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 2840–2848, 2017. 2, 5

[20] Huan Xu and Shie Mannor. Robustness and generalization.
Machine learning, 86(3):391–423, 2012. 8

[21] Zhibo Yang, Muhammet Bastan, Xinliang Zhu, Douglas Gray,
and Dimitris Samaras. Hierarchical proxy-based loss for deep
metric learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 1859–
1868, 2022. 2

6

A. Appendix

A.1. Proof for Lemma 4.1

Lemma 4.1. Generalized contrastive loss defined as ℓ(zi, zj ; θ) := (yij(∥xi 9 xj∥fθ − β) + α)+ is
√
2ωL-Lipschitz in xi and

xj for all yi, yj , θ for the embedding function f(·; θ) being L-layer CNN (with ReLU, max-pool, average-pool) with a fully
connected layer at the end, where ω is the maximum sum of the input weights per neuron.

Proof. We first show that f(x; θ) is Lipschitz continuous.
We consider x∈IRd as an input to a layer and x̂∈IRd′

as the corresponding output. We express ith component of x̂ as
x̂i =

∑
j wi,jxsi(j) where si = {si(j) ∈ [d]} is the set of components contributing to x̂i and wi,j∈θ is the layer weights.

For instance, for a fully connected layer si(j) = j; for a 3x3 convolutional layer, si corresponds to 3x3 window of depth
#channels centered at i. We now consider two inputs x, x′ and their outputs x̂, x̂′. We write:

∥x̂− x̂′∥22
∥x− x′∥22

=

∑
i∈[d′] |x̂i − x̂′

i|2

∥x− x′∥22
=

∑
i∈[d′] |

∑
j wi,jxsi(j) −

∑
j wi,jx

′
si(j)

|2

∥x− x′∥22

⩽

∑
i∈[d′]

∑
j |wi,j |2|xsi(j) − x′

si(j)
|2

∥x− x′∥22

Rearranging terms, we express:∑
i∈[d′]

∑
j |wi,j |2|xsi(j) − x′

si(j)
|2 =

∑
k∈[d]

∑
i,j:si(j)=k

|wi,j |2|xk − x′
k|2

If
∑

i,j:si(j)=k

|wi,j | ⩽ ω for all k and for all layers, i.e., the absolute sum of the input weights per neuron is bounded by ω, we can

write
∑

k∈[d]

∑
i,j:si(j)=k

|wi,j |2|xk − x′
k|2 ⩽ ω2

∑
k∈[d]

|xk − x′
k|2 ⩽ ω2∥x− x′∥22, hence,

∥x̂− x̂′∥2
∥x− x′∥2

⩽ ω.

For max-pooling and average-pooling layers, the inequality holds with ω = 1; since, we can express max-pooling as a
convolution where only one weight is 1 and the rest is 0; and similarly, we can express average-pooling as a convolution where
the weights sum up to 1.

For ReLU activation, we consider the fact that |max{0, u} −max{0, v}| ⩽ |u− v| to write:

∥ReLU(x)−ReLU(x′)∥2
∥x− x′∥2

⩽ 1.

Therefore, L-layer CNN f(x; θ) is ωL-Lipschitz.
We now consider ℓ(zi, zj ; θ) = max{0, yij(∥f(xi; θ)− f(xj ; θ)∥2 − β) + α} as g(h(f(xi; θ), f(xj ; θ))) where g(h) =

max{0, yij(h− β) + α} is 1-Lipschitz, and h(f, f ′) = ∥f − f ′∥2 is
√
2-Lipschitz and 1-Lipschitz in f for fixed f ′. Thus,

for yi, yj , θ fixed, ℓ(zi, zj ; θ) := (yij(∥xi 9 xj∥fθ − β) + α)+ is ωL-Lipschitz in xi and in xj ; and
√
2ωL-Lipschitz in both,

for all yi, yj , θ.

Note that it is easy to show that the normalization proposed in Section 4.4:

v̂ =

{
v for ∥v∥2 ⩽ 1
v/∥v∥2 for ∥v∥2 ⩾ 1

is 2-Lipschitz. Therefore, our loss is still Lipschitz continuous with normalized embeddings in our framework.

7

A.2. Proof for Proposition 4.1

Proposition 4.1. Given S={zi}i∈[m]
i.i.d.∼ pZ such that ∀k∈Y {xi|yi=k} is δS -cover2 of X , ℓ(zi, zj ; θ) is ζ-Lipschitz in xi, xj

for all yi, yj and θ, and bounded by L; then with probability at least 1− γ,∣∣∣Ezi,zj [ℓ(zi, zj ; θ)]− 1
m

∑
i∈[m]

Ezj [ℓ(zi, zj ; θ)]
∣∣∣ ⩽ O(ζ δS) +O(L

√
log

1
γ/m).

Proof. We start with defining L̂(z; θ) := Ez′∼pZ [ℓ(z, z
′; θ)]. Note that

∥L̂(z1; θ)− L̂(z2; θ)∥2 = |Ez′∼pZ [ℓ(z1, z
′; θ)]− Ez′∼pZ [ℓ(z2, z

′; θ)]|
⩽ Ez′∼pZ [|ℓ(z1, z′; θ)− ℓ(z2, z

′; θ)|].

Therefore, ℓ(z, z′; θ) being ζ-Lipschitz in x for fixed x′, y, y′ and θ, and bounded by L implies L̂(z; θ) is also ζ-Lipschitz in x
for all y, θ and bounded by L. Hence, we have

|L̂(zi; θ)− L̂(z; θ)| ⩽ ζ δS ∀zi, z : zi ∈ S, z ∈ Z, ∥zi − z∥2 ⩽ δS

From Theorem 14 of [20], we can partition Z into K = mint{|t| : t is δS
2 -cover of Z} disjoint sets, denoted as {Ri}i∈[K],

such that ∀i : zi ∈ δS ; both zi, z being ∈ Ri implies |L̂(zi; θ) − L̂(z; θ)| ⩽ ζ δS . Hence, from Theorem 3 of [20], with
probability at least 1− γ, we have:∣∣∣Ez,z′∼pZ [ℓ(z, z

′; θ)]− 1
m

∑
i∈[m]

Ez∼pZ [ℓ(zi, z; θ)]
∣∣∣ = ∣∣∣Ez∼pZ [L̂(z; θ)]− 1

m

∑
i∈[m]

L̂(zi; θ)
∣∣∣

⩽ ζ δS + L

√
2K log 2 + 2 log 1/γ

m

Note that K is dependent on δs and satisfies lim
m→∞

K
m → 0 ensuring that the right hand side goes to zero as more samples are

exploited and the covering radius is improved. Thus, asymptotically the following holds:∣∣∣Ezi,zj [ℓ(zi, zj ; θ)]− 1
m

∑
i∈[m]

Ezj [ℓ(zi, zj ; θ)]
∣∣∣ ⩽ O(δs) +O(

√
log

1
γ/m) with probability at least 1− γ .

A.3. Proof for Proposition 4.2

Proposition 4.2. Given {zi}i∈[n]
i.i.d.∼ pZ and a set s ⊂ [n]. If s = ∪ks

′
k with s′k is the δs-cover of {i ∈ [n] | yi = k} (i.e.,

the samples in class k), ℓ(zi, zj ; θ) is ζ-Lipschitz in xi, xj for all yi, yj and θ, and bounded by L, e(Asx[n]) training error;
then with probability at least 1− γ we have:∣∣∣ 1

n2

∑
i,j∈[n]x[n]

ℓ(zi, zj ;Asx[n])− 1
|s|n

∑
i,j∈sx[n]

ℓ(zi, zj ;Asx[n])
∣∣∣ ⩽ O(ζ δs) +O(e(Asx[n])) +O(L

√
log

1
γ/n)

Proof. We are given a condition on s that we can partition Z into m = |s| disjoint sets such that any sample from the dataset
(xi, c), i ∈ [n], has a corresponding sample from s, (x′

j , c), j ∈ s within δs ball. Thus, we start with partitioning Z into s
disjoint sets as Z = ∪iSi with Si ∩ Sj = ∅, ∀i ̸= j.

We define ℓ[n](z) = 1
n

∑
i∈[n]

ℓ(z, zi,Asx[n]) and ℓs(z) = 1
m

∑
i∈s

ℓ(z, zi,Asx[n]) for the sake of clarity. Hence, we are

interested in bounding | 1n
∑

[n] ℓ[n](zi)−
1
m

∑
s ℓ[n](zi)|. We proceed with using triangle inequality to write:∣∣∣ 1n ∑

i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣

⩽
∣∣∣ 1n ∑

i∈[n]

ℓ[n](zi)−
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣(T1)

+
∣∣∣ ∑
i∈s

ni

n ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣(T2)

2S ⊂ S′ is δS -cover of S′ if ∀z′ ∈ S′, ∃z ∈ S such that ∥z − z′∥2 ⩽ δS .

8

For term (T1) we write:

(T1) ⩽ 1
n

∑
i∈[m]

∑
zj∈Si

|ℓ[n](zs(i))− ℓ[n](zj)|
(1)

⩽ ζ δs

where in (1), we use ζ-Lipschitz of the loss function and the condition |zs(i) − zj | ⩽ δs, ∀zj ∈ Si.
Using triangle inequality, we bound term (T2) as:∣∣∣ ∑

i∈s

ni

n ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣ ⩽ ∣∣∣Ez∼pZ [ℓs(z)]− Ez∼pZ [ℓ[n](z)]

∣∣∣(T2.1)

+
∣∣∣Ez∼pZ [ℓ[n](z)]−

∑
i∈s

ni

n ℓ[n](zi)
∣∣∣(T2.2)

+
∣∣∣Ez∼pZ [ℓs(z)]− 1

n

∑
i∈[n]

ℓs(zi)
∣∣∣(T2.3)

where we use 1
m

∑
s ℓ[n](zi) =

1
n

∑
[n] ℓs(zi) in (T2.3).

For (T2.1) we have:
(T2.1) ⩽

∣∣∣Ez∼pZ [
1
m

∑
i∈s

ℓ(zi, z)− 1
n

∑
i∈[n]

ℓ(zi, z)]
∣∣∣

where we abuse the notation for the sake of clarity and drop parameter Asx[n] dependency from the loss. Rearranging the
terms, we have:

(T2.1) ⩽
∣∣∣Ez∼pZ [

1
m

∑
i∈[m]

n−mni

n ℓ(zs(i), z)]
∣∣∣+ ∣∣∣Ez∼pZ [

1
n

∑
i∈[m]

∑
j∈Si

ℓ(zs(i), z)− ℓ(zj , z)]
∣∣∣

where similar to (T1), the second summand is upper bounded by ζ δs. Using triangle inequality for the first summand, we
write: ∣∣∣Ez∼pZ [

1
m

∑
i∈[m]

n−mni

n ℓ(zs(i), z)]
∣∣∣ ⩽ (T2.3) + e(Asx[n])

Hence, we have:
(T2.1) ⩽ ζ δs + (T2.3) + e(Asx[n])

where from Hoeffding’s Bound, (T2.3) ⩽ L

√
log

1
γ/2n with probability at least 1− γ:

Finally, we express (T2.2) as:

(T2.2) =
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]p(z ∈ Si)−
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣

⩽
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]
ni

n −
∑
i∈s

ni

n ℓ[n](zi)
∣∣∣

+
∣∣∣ ∑
i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]p(z ∈ Si)−
∑

i∈[m]

Ez∼pZ [ℓ[n](z) | z ∈ Si]
ni

n

∣∣∣
Rearranging the terms we have:

(T2.2) ⩽
∑

i∈[m]

ni

n maxz∈Si |ℓ[n](z)− ℓ[n](zs(i))|+maxz∈Z |ℓ[n](z)|
∑

i∈[m]

∣∣∣ni

n − p(z ∈ Si)
∣∣∣

where the first summand is bounded above by ζ (δs + ε(n)) owing to loss being ζ-Lipschitz. Here, we denote ε(n) as the
covering radius of Z , i.e., the dataset, {xi, yi}[n] is ε(n)-cover of X xY . We note that (ni)i∈[m] is an i.i.d. multinomial
random variable with parameters n and (pZ(z ∈ Si))i∈[m]. Thus, by the Breteganolle-Huber-Carol inequality (Proposition
A6.6 of [15]), we have :

(T2.2) ⩽ ζ (δs + ε(n)) + L

√
2m log 2+2 log 1/γ

n

Finally, with probability at least 1− γ, we end up with:∣∣∣ 1n ∑
i∈[n]

ℓ[n](zi)− 1
m

∑
i∈s

ℓ[n](zi)
∣∣∣ ⩽ ζ (3 δs + ε(n)) + e(Asx[n]) + L (

√
log

1
γ/2n +

√
2m log 2+2 log 1/γ

n)

9

Corollary 4.2.1. Generalization performance of the proxy-based methods can be limited by the maximum of distances between
the proxies and the corresponding class samples in the dataset.

Proof. The covering radius for each class subset is the maximum distance between the corresponding class samples and the
class proxy. We at least know that the generalization error is bounded above with a term proportional to that distance.

10

	. Extended Empirical Study for DML
	. Fair (MLRC) Evaluation on DML Benchmarks
	. Further Ablations

	. Empirical Study Details
	. Experimental Setup

	. Appendix
	. Proof for Lemma 4.1
	. Proof for Proposition 4.1
	. Proof for Proposition 4.2

