
Split Building Scene Ids

Evaluation UwV83HsGsw3, X7HyMhZNoso, Z6MFQCViBuw,
e9zR4mvMWw7, q9vSo1VnCiC, rPc6DW4iMge,
rqfALeAoiTq, uNb9QFRL6hY, wc2JMjhGNzB,
x8F5xyUWy9e, yqstnuAEVhm

Testing VFuaQ6m2Qom, VLzqgDo317F, ZMojNkEp431,
jh4fc5c5qoQ, jtcxE69GiFV, pRbA3pwrgk9,
pa4otMbVnkk, D7G3Y4RVNrH, dhjEzFoUFzH,
GdvgFV5R1Z5, gYvKGZ5eRqb, YmJkqBEsHnH,

Training /* all other scenes excluded from
evaluation & testing splits */

Table 1. Dataset split for Matterport3D [2] segmentation.

A. Experimentation details

A.1. Matterport3D dataset

To divide the 10800 panoramic equirectangular images
in the Matterport3D [2] dataset, we create standard training,
evaluation, and test splits. The 90 building-scale scenarios,
which included a range of scene types like residences, of-
fices, and churches, were divided into an 80-10-10 split. For
all our segmentation experiments using the 40 object cate-
gories, we use these training, validation, and test splits.

B. Qualitative analysis

B.1. Multi-modal panoramic semantic segmenta-
tion

Figure 2 and Figure 1, which come from the Stan-
ford2D3DS [1] evaluation set and the Structured3D [7] test
set, respectively, show further qualitative comparisons be-
tween various fusion combinations for our proposed frame-
work. In Fig. 2 (a) and (b), our tri-model (RGB-D-N) is
able to give better segmentation results in the categories de-
noted by the black dashed rectangles, such as the Door,
Window, and Bookshelf, while the baseline (RGB-only)
model struggles to recognize these significantly distorted
objects. The RGB-only baseline models wrongly segment
the Door in figure Fig. 1 (c) as a part of the Wall. Our
tri-model (RGB-D-N) in this case achieves the correct seg-
mentation results with greater accuracy than RGB-D tech-
niques. The same conditions apply to the Cabinet in Fig. 1
(a) and the support between the Bed and Cabinet in Fig. 1
(b). Compared to other approaches, In Fig. 1 (d), along
with the precise geometry shapes for objects placed inside
the Cabinet structure, a better segmentation result from our
multi-modal (RGB-D-N) is displayed. However, due to vi-
sual ambiguity, the category is incorrectly predicted by all
models.

#Inputs Method #Params (G) TFLOPs

Unary

Trans4PASS+ [6] 0.039 0.131
HoHoNet [5] 0.070 0.125
PanoFormer [4] 0.020 0.081
OURS 0.040 0.079

Binary
HoHoNet [5] 0.070 0.126
PanoFormer [4] 0.020 0.081
OURS 0.081 0.106

Ternary OURS 0.123 0.133

Table 2. Comparison of computational complexity calculated @
512× 1024× 3 input dimensional.

C. Quantitative analysis

C.1. Computational complexity

For tri-modal (RGB-Depth-Normals), bi-modal (RGB-
Depth), and uni-modal (RGB-Only) panoramic fusion on
Stanford2D3DS [1], we compare the computational com-
plexity of our framework with that of existing methods
in Tab. 2. As the number of input streams rises, our study
indicates that our method’s complexity also significantly
rises.

C.2. Detailed results in indoor scenarios

More qualitative comparisons based on three-fold cross
validation of Stanford2D3DS [1] indoor scenarios are
shown in Tab. 3 to support our propose approach. When
compared to the current panoramic approaches, our multi-
model fusion models segment objects in regularly used cat-
egories including ceiling, wall, floor, window, and office
furniture better. Our RGB-Depth-Normals fusion model
receives top score mIoU in 8 out of 13 categories. How-
ever, this model struggled to segment the Beam, Column,
and Wall categories.

Figure 3 shows the advantage of combining multi-
modalities, such as RGB, Depth, and Normals, over the
baseline of our technique that uses RGB alone to utilize
complimentary textual, geometric, and disparity informa-
tion. With our tri-fusion model (RGB-D-N), we generally
observe a considerable improvement across all object cat-
egories. For the Pillow and Mirror categories on Struc-
tured3D [7], refer Fig. 3 (a), as well as the Bathtub and
Gym Equipment categories on Matterport3D [2], refer Fig. 3
(b), we saw a considerable rise of mIoU of up to 10% and
15%, respectively. However, the box category on Struc-
tured3D [7] and the Cabinet, Plant, and Toilet categories
on [2] also had drops of 1% to 4%.



Figure 1. Structured3D [7] segmentation visualizations. Zoom in for better view..



Figure 2. Stanford2D3DS [1] segmentation visualizations. Zoom in for better view.
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Trans4PASS+ [6]
R

G
B
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R
G

B
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R
G

B
-H
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OURS

R
G

B
-N
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OURS

R
G

B
-D

-H
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OURS

R
G

B
-D

-N
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OURS

R
G

B
-N

-H

60.2 7.8 67.9 59.3 90.5 73.2 50.8 22.8 64.9 98.1 44.5 67.7 76.3 59.3

Table 3. Per-class results (%) on the 3-fold validation of the Stanford2D3DS [1] benchmark.

(a) Structured3D [7] (b) Matterport3D [2]

Figure 3. Per-class mIoU (%) gain of OURS (RGB-Depth-Normals) multi-modal panoramic semantic segmentation over baseline RGB-
only (OURS) from Structure3D (left) and Matterport3D (right) test splits. Zoom in for better view.
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