
Supplementary Materials - Watch Where You Head: A View-biased Domain
Gap in Gait Recognition and Unsupervised Adaptation

1. Evaluation

1.1. GOUDA with view annotations

In the paper, we present GOUDA results on various tar-
get datasets. We provide the results of the entire pipeline,
including using estimated views extracted from the View
Extraction module. However, there are two indoor datasets,
CASIA-B and OU-MVLP, that provide ground-truth view
annotations in advance. In order to reduce the noise pro-
duced by the View Extraction module and purely assess
our Triplet Selection algorithm, we present GOUDA re-
sults using the view annotations (see Table 1). It is appar-
ent that the Rank-1 improvements are higher, in this case,
indicating the potential of GOUDA if using more accurate
views. Particularly, the results on OU-MVLP dataset show
a significant change. As an example, there is a substan-
tial increase in Rank-1, from 27.9% with estimated views to
40.5% with annotated views, when adapting GaitSet back-
bone from CASIA-B (source) to OU-MVLP (target).

In OU-MVLP dataset, RGB frames are not available
(compared to CASIA-B dataset), and the view estimation
is inferred from the quality of the provided 2D keypoints
(Fig. 1a), especially compared to the view estimation of
CASIA-B (Fig. 1b). These estimation errors might af-
fect the Triplet Selection algorithm. The positive samples,
which belong to the cross view set, should indeed have dif-
ferent views than the anchor. However, if their views were
estimated incorrectly, they might have entered to this set
by mistake, and should have actually belong to the simi-
lar view set. This unintended situation results in bringing
closer samples with similar views, causing to not fulfilling
the entire potential of GOUDA.

1.2. Applications

Suppose a real-world scenario of a target dataset with
varied views but without true-positives (each person ap-
pears once). GOUDA can still be applied as it does not
assume any conditions on the target labels. To demonstrate
it, we create a subset of OU-MVLP dataset with a single
appearance of each person and use it to train GOUDA us-
ing GaitGL pretrained on GREW. The Rank-1 accuracy im-
proves from 25.7% to 29.3%. In this experiment we used

OU-MVLP ground-truth view annotations.

2. Analysis
In this section, we provide additional analysis aspects,

expanding the analysis presented in the paper.

2.1. GREW and Gait3D view estimation

Both GREW [8] and Gait3D [7] were captured in the
wild. Therefore, their view annotations are not provided.
Fig. 2 presents the histograms of the estimated views for
these datasets, using the proposed View Extraction module.

2.2. View analysis

Fig. 3 presents the internal results on OU-MVLP test set
by the end of GOUDA training. Two different cases are
presented. In the first case, GOUDA was trained using OU-
MVLP estimated views. In the second case, ground-truth
view annotations were utilized for training. As detailed,
the view estimation quality of OU-MVLP dataset is insuf-
ficient. Consequently, we observe greater improvements in
internal Rank-1 accuracies when utilizing view annotations.

2.3. Target view distribution

In the paper, we describe a fundamental phenomenon in
gait recognition models. As detailed, gait recognition mod-
els place a strong emphasis on view-based features in the
target domain, exposing the huge gap between source and
target domains. The observed behavior is not unique to any
particular gait backbone, and is consistent across different
backbones that we checked. In this context, we present sim-
ilar patterns for additional gait recognition models beyond
what is covered in the paper (see Figs. 4, 5, and 6). The
pattern is less clear (but still exists) when using GaitSet as
the backbone (Fig. 5), probably because it perceives the sil-
houettes as a set of images rather than a temporal sequence,
thus assigning less significance to the view information.

2.4. Curriculum Learning

Further ablation experiments on the curriculum learn-
ing hyperparameter q (the percentage of top confident valid
triplets selected for training in each stage) are reported in
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Source Dataset Backbone
Target Dataset

CASIA-B
OU-MVLP

NM BG CL

CASIA-B

GaitSet
GaitPart
GaitGL

-
40.5 - 27.9 - 9.6

34.9 - 27.5 - 10.8
41.4 - 34.0 - 16.2

OU-MVLP

GaitSet
GaitPart
GaitGL

90.8 - 87.0 - 74.0
94.5 - 91.5 - 73.9
94.8 - 92.8 - 81.7

70.4 - 68.0 - 55.5
80.6 - 78.4 - 56.9
82.3 - 80.9 - 71.5

29.5 - 27.2 - 16.4
36.7 - 38.7 - 20.7
38.8 - 44.6 - 28.8

-

GREW

GaitSet
GaitPart
GaitGL

82.1 - 76.9 - 65.6
85.7 - 81.4 - 69.2
88.9 - 82.7 - 69.8

61.6 - 56.8 - 44.9
70.1 - 68.3 - 52.1
79.3 - 61.1 - 73.2

23.9 - 26.0 - 20.8
33.8 - 33.9 - 25.4
45.6 - 44.6 - 31.9

49.5 - 38.8 - 21.8
52.5 - 43.6 - 23.9
62.1 - 44.2 - 25.7

Gait3D

GaitSet
GaitPart
GaitGL

80.2 - 73.4 - 62.8
80.1 - 76.7 - 61.8
82.3 - 79.0 - 63.5

58.1 - 51.9 - 45.8
65.4 - 61.1 - 47.0
70.3 - 65.4 - 51.2

21.7 - 20.4 - 11.9
23.0 - 24.5 - 13.7
29.6 - 24.9 - 16.3

44.5 - 41.9 - 20.8
37.4 - 32.2 - 19.1
40.4 - 37.0 - 23.7

Table 1. Rank-1 accuracy of GOUDA on the target datasets CASIA-B and OU-MVLP [5, 6], compared to direct testing results on the
backbones [1], [2], [3]. Here, we present two different setups of GOUDA results, one with estimated views (as presented in the paper), and
the other by using ground-truth annotated views. The results of GOUDA with view annotations are reported on the left, GOUDA results
with estimated views are in the middle, and the direct testing results are on the right, separated by dashes. In most cases, the best results
are achieved by using GOUDA with annotated views, avoiding any noise produced by wrong view estimations or provided 2D keypoints.

(a) OU-MVLP (b) CASIA-B

Figure 1. View estimation of OU-MVLP [5] and CASIA-B [6] datasets, compared to their ground-truth view annotations provided as
meta-data. The view estimation of OU-MVLP is limited due to the inaccurate 2D keypoints provided. Contrary to OU-MVLP, CASIA-B
dataset includes RGB images that can be used to estimate accurate 2D keypoints, and therefore its view estimation is better (ambiguity of
±180 degrees is ignored).

Figure 2. Histograms of estimated views for Gait3D and GREW datasets [7, 8] using the View Extraction module.



Figure 3. The internal Rank-1 accuracies on the target domain (OU-MVLP) test set. “Direct Testing” is a gait backbone pretrained on the
source domain (GREW). Each element in the matrix is the Rank-1 accuracy for the setting in which the probe view is α and the gallery set
includes sequences of view β. Brighter color represents higher Rank-1. The final Rank-1 is the average of all Rank-1 accuracies such that
α ̸= β. We present higher improvements when using view annotations (on the right) rather than using estimated views (in the middle).

q values [%]
OU-MVLP → CASIA-B
NM BG CL

5, 25, 70, 100 91.3 76.7 39.7
10, 20, 40, 100 92.4 80.3 47.2
15, 30, 60, 100 90.1 74.1 40.6
20, 50, 75, 100 91.5 76.1 38.1

GOUDA (10, 25, 50, 100) 92.8 80.9 44.6

Table 2. Ablation experiments on the curriculum learning hyper-
parameter q. In this setting, OU-MVLP is the source domain and
CASIA-B is the target domain. Average Rank-1 accuracies across
all 11 views, are shown, excluding identical-view cases.

Table 2. These results are inferior or comparable to those
achieved with the original q values: 10, 25, 50, and 100.

3. Justification

3.1. Positive sample selection

Here, we illustrate the intuition behind our positive sam-
ple strategy. Fig. 7 presents a shared visualization of view-
ing angles (color coded) and identities (shapes) on a sub-
set of the OU-MVLP target dataset. For the sake of vi-
sualization, we present only 10 identities. In Fig. 7a, the
green dashed curves illustrate the cases in which our hy-
pothesis is satisfied, meaning that the closest samples with
different views share the same identity. Conversely, the
red-bordered regions showcase “optional” breach of our hy-
pothesis. Our approach effectively functions under “noisy”
pseudo labeled data. To this end, our curriculum learn-
ing protocol is structured to potentially avoid the choice of
anchors from the red-bordered areas. This gradual model

enhancement, as advocated by curriculum learning, conse-
quently fosters the selection of anchors from the green ar-
eas while contributing to the reduction of red-bordered re-
gions by gradual target adaption. This result is justified by
the ramp-up in cross-view R1 accuracy after the adaptation
(from 25.7% to 44.2%), and with better identity-based clus-
tering, as demonstrated in Fig. 7b.

3.2. Quantitative evaluation

To further support the triplet selection strategy, we
present Table 3. It depicts the percentage of selecting the
correct triplets, as well as the correct positive samples
and negative samples, separately. The positive sample is
correct if it shares the same identity as the anchor, whereas
the negative sample is correct if it has a different identity.
We show two different settings using the initial pre-trained
source model (first curriculum learning phase). It is shown
that the selection percentage of both positive and negative
samples is substantial, even under “noisy” conditions.
Moreover, by employing the curriculum learning approach,
the model performance on the target domain is improved
throughout training, leading to an increase in the proportion
of correct triplets (see Fig. 8).



(a) Target = Source (b) Direct Testing (c) Direct Testing + GOUDA with
estimated views

(d) Direct Testing + GOUDA with
annotated views

Figure 4. Gait embedding visualization (UMAP [4]) for domain transfer between GREW as source and OU-MVLP as the target domain
using GaitGL. Points are color coded by viewing angle. Fig. 4a presents the single domain scenario, in which the model was trained on
OU-MVLP training set. Fig. 4b presents the Direct Testing scenario, in which the model was trained on a different gait dataset (GREW).
Fig. 4c presents the Direct Testing scenario after applying GOUDA using estimated views. Fig. 4d presents the Direct Testing scenario
after applying GOUDA using the ground-truth annotated views. GOUDA achieves higher improvements when using annotated views.

(a) Target = Source (b) Direct Testing (c) Direct Testing + GOUDA with
estimated views

(d) Direct Testing + GOUDA with
annotated views

Figure 5. Gait embedding visualization (UMAP [4]) for domain transfer between Gait3D as source and OU-MVLP as the target domain
using GaitSet. Points are color coded by viewing angle. Fig. 5a presents the single domain scenario, in which the model was trained on
OU-MVLP training set. Fig. 5b presents the Direct Testing scenario, in which the model was trained on a different gait dataset (Gait3D).
Fig. 5c presents the Direct Testing scenario after applying GOUDA using estimated views. Fig. 5d presents the Direct Testing scenario
after applying GOUDA using the ground-truth annotated views. GOUDA achieves higher improvements when using annotated views.

(a) Target = Source (b) Direct Testing (c) Direct Testing + GOUDA with
estimated views

(d) Direct Testing + GOUDA with
annotated views

Figure 6. Gait embedding visualization (UMAP [4]) for domain transfer between CASIA-B as source and OU-MVLP as the target domain
using GaitPart. Points are color coded by viewing angle. Fig. 6a presents the single domain scenario, in which the model was trained on
OU-MVLP training set. Fig. 6b presents the Direct Testing scenario, in which the model was trained on a different gait dataset (CASIA-B).
Fig. 6c presents the Direct Testing scenario after applying GOUDA using estimated views. Fig. 6d presents the Direct Testing scenario
after applying GOUDA using the ground-truth annotated views. GOUDA achieves higher improvements when using annotated views.



(a) Direct Testing (b) Direct Testing + GOUDA

Figure 7. Gait embedding visualization (UMAP [4]) for domain transfer between GREW as source and OU-MVLP as the target domain
using GaitGL. Points are color coded by viewing angle while identities are discriminated via the plot shapes. For the sake of visualization,
only 10 identities are shown. Fig. 7a presents the Direct Testing scenario, in which the model was trained on a different gait dataset
(GREW). The green/red dashed curves present the case in which the closest sample with different view shares the same/different identity,
respectively. Fig. 7b presents the distribution after applying GOUDA. Same identities are well clustered, reflected by higher Rank-1
accuracy.

Target Dataset Triplets Positives Negatives

CASIA-B 88.1 98.5 88.9
OU-MVLP 69.4 69.4 100

Table 3. Identity-wise correctness [%] of the selected triplets in
the first curriculum learning phase. The correctness of the positive
and negative samples is presented as well. A positive sample is
correct if it shares the same anchor identity, while a negative sam-
ple is correct if it has a different identity. Here, GaitGL is used for
domain transfer from GREW (source) to CASIA-B or OU-MVLP
(target) using the ground-truth annotated views.

Figure 8. Curriculum Learning Analysis. Triplet Selection is ap-
plied 4 times during training (x-axis). Y-axis shows how many of
the selected triplets are correct considering person identities. The
colors represent the top confident triplets, and in each stage the
chosen percentage is marked by a rectangle. Here, GaitGL is used
for domain transfer from GREW (source) to OU-MVLP (target)
with the ground-truth annotated views.
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