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1. Supplementary Performance Evaluation

In this section we provide a performance analysis of
BoostRad, expanding upon the insights provided in Section
4 of the main paper.

1.1. Reflection Boosting Performance Evaluation

In this section, we assess the boosting DNN’s accuracy
in detecting reflection points. Notably, objects consist of
multiple reflection points. Our evaluation involves compar-
ing the boosting DNN’s output to ground truth reflection
points using a specific metric. The ground truth reflection
points were determined as the central positions of pixels in
the ’super-radar’ reflection image with intensities surpass-
ing a predefined noise threshold. On the other hand, detec-
tion points in the boosting DNN’s output were considered
as the centers of pixels surpassing a detection threshold.
A precision-recall curve was generated for varying detec-
tion thresholds. Detection points within a 25cm radius of a
ground truth point were considered true positive detections.
The average precision (AP) was computed by the area under
the precision-recall curve.

Fig. 1 presents the precision-recall curve of the boosting
DNN output. The boosting DNN was trained as outlined
in Section 4.1 of the main paper. The precision-recall were
calculated with a set of 5,000 synthetic examples. These
examples were generated through the simulation detailed
upon in Section 3.3 of the main paper and were distinct
from the training dataset. The figure offers a comparative
perspective by presenting the precision-recall curve of the
original radar reflection intensity images from the same test
set, prior to undergoing the boosting DNN’s influence.

The results presented in Fig. 1 clearly indicate a substan-
tial enhancement in the accuracy of radar reflection detec-
tion achieved by the boosting DNN when compared to the
original radar reflection intensity image. Notably, the aver-
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Figure 1. Reflection detection accuracy of the boosting DNN out-
put image compared to the original intensity image.

age precision (AP) attained by the boosting DNN exceeds
that of the original image by more than twofold. This im-
provement can be attributed to the boosting DNN’s ability
to generate a radar image that is both sharper and cleaner
than the original image, as evidenced by the qualitative ex-
amples presented in Section 4.2 of the main paper and in
Section 1.2 below.

1.2. Qualitative Evaluation With High-End Radar

In Figure 6 of the main paper, we showcase qualitative
examples of BoostRad using the RADDet dataset. This sec-
tion presents additional qualitative examples, this time em-
ploying a higher-end radar compared to the one in RAD-
Det. The specifications of this higher-end radar system can
be found in Table 1. Notably, it has three times higher
range and four times higher azimuth angle resolution than
the RADDet radar. We trained the boosting DNN using syn-
thetic radar images produced via simulation of the higher-
end radar. Subsequently, we tested both the boosting DNN
and the object detection DNN using real measurements col-
lected from this higher-end radar.

Fig. 2 presents qualitative examples of real measure-
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ments from the higher-end radar. The original radar reflec-
tion image with the ’U-Net’ object detection reference (see
section 4.1 in the main paper) is presented in column (a).
The output image of the boosting DNN and the BoostRad
detected objects are presented in column (b), while column
(c) showcases a scene photograph and an enlarged view of
the scene’s vehicles. Each row is a different scenario. In
(a) and (b), the detected bounding boxes are denoted in pur-
ple, and the ground truth bounding boxes are denoted in
white. In (c), the ground truth boxes are marked in red.
Notably, the wide point spread function introduces clutter
that obscures vehicles with lower reflectivity in (a). Conse-
quently, this leads to the miss-detection of ’car 4’ in Sce-
nario 1, ’car 1’ in Scenario 2, and ’car 3’ in Scenario 3. In
contrast, images in (b) exhibit considerably reduced clut-
ter due to the narrower spreading function, facilitating the
detection of all vehicles. Another observation of the nar-
rower spreading function in (b) compared to (a) is apparent
when examining the lighting poles that are located along
a line on the right side of the image in scenario 1 and on
the left side of the images in scenario 2 and 3 (as indicated
in the figure). These lighting poles possess strong reflec-
tivity, causing their spreading function main-lobe and side-
lobes to stand out in (a). In contrast, (b) presents sharper
lighting poles with significantly narrower spreading func-
tions, resulting in reduced masking of other objects within
the scene.

Radar parameter

Maximal range 150m
Range resolution 0.28cm
Azimuth field of view (−60◦ : +60◦)
Azimuth resolution 3.9◦

Elevation field of view (−20◦ : +20◦)
Elevation resolution none
Number of Tx antennas 4
Number of Rx antennas 8
Carrier frequency 77GHz
Sampling rate 25Mhz
Waveform Fast chirps FMCW

Table 1. Specifications of radar used in Sections 1.2.

1.3. Object Detection AP at Relatively High IOU

Table 1 of the main paper (in Section 4.1) presented Av-
erage Precision (AP) comparison between BoostRad and
the reference methods for IOU thresholds 0.1 and 0.3. Ad-
ditional AP results are presented in Table 2 of the supple-
mentary material, specifically at an IOU of 0.5 for the ’car’
class within the RADDet dataset. As expected, the AP
scores for all methods exhibit a reduction at an IOU of 0.5
in comparison to IOU values of 0.1 and 0.3. Nevertheless,

Table 2. Object Detection Average Precision on RADDet Dataset
for class ’car’ in all ranges (R > 0) at IOU 0.5.

Method Boosting @0.5

RADDet [4]
✗ 47.98
✓ 50.70

(+2.72)

Probalistic [2]
✗ 40.68
✓ 45.16

(+4.48)

U-Net ✗ 51.50

BoostRad ✓
52.75

(+1.25)

the performance advantage of BoostRad compared to the
reference methods is still apparent.

2. Radar Simulation Details
Section 3.3 of the primary paper offers a descrip-

tion of the simulation processing procedures. In this ac-
companying section, we expound upon the mathemati-
cal expressions employed in the simulation’s implementa-
tion. The simulation involves a Multiple-Input Multiple-
Output (MIMO) radar that emits a rapid chirp Frequency-
Modulated Continuous-Wave (FMCW) waveform [1, 3].
The transmission signal as a function of time, t, is math-
ematically represented as follows:

x(t) =

M−1∑
m=0

s(t−mTc), (1)

where Tc is the chirp duration, M is the number of chirps
per frame, and

s(t) =

{
e−j2π(fct+

1
2αt

2), if 0 ≤ t ≤ Tc

0, otherwise ,
(2)

is a single chirp, where j =
√
−1 is the imaginary unit,

fc is the carrier frequency and α is the chirp slope. The
received signal at the kth receive antenna is a superposition
of all the reflected signals from all transmit antennas, which
is expressed by

yk(t) =

I−1∑
i=0

Q−1∑
q=0

cqx(t− τ qk,i), (3)

where Q are the number of reflection points, cq is the qth

reflection point’s intensity, I is the number of transmit an-
tennas, i is the transmit antenna index, and τ qk,i is the round
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Figure 2. Qualitative examples with a higher-end radar than the radar used in RADDet. Each row is a different scenario. (a) original radar
reflection image with the ’U-Net’ reference detections, (b) boosting DNN output image with BoostRad detections, (c) camera image of the
scene with ground truth bounding boxes. In (a) and (b), detection bounding boxes are purple, and ground truth bounding boxes are white.
The vehicles have an identification number per each scenario that is written next to the ground truth bounding box.

trip delay between the ith transmit antenna to the qth reflec-
tion point and back to the kth received antenna.

To derive the radar reflection intensity image, the re-
ceived signal undergoes conventional FMCW radar pro-
cessing [1]. This process encompasses down-conversion of
the received signal through multiplication with the transmit
reference signal (1), a range Fast Fourier Transform (FFT)
for each chirp, a Doppler FFT across range bins over chirps,
and beamforming for each range-Doppler bin across anten-
nas.

3. Additional Implementation Details

Additional implementation details to those given in Sec-
tion 4 of the main paper are specified below. The probabil-
ity mapping of the ground truth reference given in Eq. 1 of
the main paper was calculated with a fixed noise variance
σ2
n = 8× 10−5 and signal variance σ2

s = 100R2
maxσ

2
n/r

2,
where Rmax = 50[m] is the maximal range of the TI pro-
totype radar (used in RADDet and CARRADA) and r is
the range of the ground truth reference pixel. The hyper-
parameters for the Boosting DNN loss in Eq. 2 of the main
paper are: (ρr, ρn, ρs) = (0.1, 5, 1). For the object detec-
tion loss, we weighted the L2 regression loss with factor

10−3 compared to the classification loss.

4. RADDet Train-Test Set Split

As outlined in Section 4 of the main paper, the perfor-
mance evaluation conducted in the main paper involved a
train-test set split of the RADDet dataset that is different
than the split proposed in [4]. Table 3 presents the re-
sults of BoostRad and the reference methods on the original
RADDet train-test split. The results show that all methods
achieved higher results compared to Table 1 in the main pa-
per, and BoostRad does not attain a performance gain com-
pared to the reference methods. These results can be at-
tributed to the fact that the test and training images in the
original split [4] were derived from the same scenarios, of-
ten with small temporal gaps. As a result, a strong corre-
lation is established between the test and training samples,
leading to overfitting of all methods on the test set.

To address the issue of overfitting, we adopted a train-
test set partitioning approach that ensures that the training
and testing sets encompass disparate scenarios. The RAD-
Det dataset comprises 15 distinct scenes, each detailed in
Table 4. In our partitioning scheme, we designated scenes 9
and 11 for the test set, while the remaining scenes were uti-



Table 3. Object Detection Average Precision on RADDet With Original Train-Test split in [4]

Car Person

R ≥ 0 R ≥ 40 R ≥ 0

Method Boosting @ 0.1 @ 0.3 @ 0.5 @ 0.1 @ 0.3 @ 0.1 @ 0.3

RADDet [4] ✗ 93.82 88.03 68.71 85.76 62.73 69.40 43.48

Probalistic [2] ✗ 92.87 86.36 66.30 81.55 58.58 64.29 48.10

U-Net ✗ 94.68 89.59 71.00 88.35 68.09 67.00 50.21

BoostRad ✓ 93.58 88.59 67.29 85.40 64.96 66.66 51.39

Scene ID Frame Numbers

0 0− 439, 559− 724, 1549− 1971
1 440− 555, 731− 1548, 1972− 2571
2 2572− 3038
3 3039− 3437
4 3438− 3653
5 3654− 4073
6 4074− 4331
7 4332− 5018, 5623− 6243
8 5019− 5622, 6244− 6608
9 6609− 8046
10 8047− 8634
11 8635− 9158
12 9159− 9437
13 9438− 9745, 10175− 10292
14 9746− 10174

Table 4. RADDet partition into distinct scenes

lized for the training set. Our modified training set encom-
passes a total of 17,021 cars (compared to the original parti-
tion’s count of 16,755) and 5,240 pedestrians (compared to
the original 5,210). For the test set, we have 4,094 cars (as
opposed to 4,135 in the original) and 1,011 pedestrians (as
opposed to 1,280).

5. Probability Mapping Derivation

In this section we provide a detailed derivation of the
mapping of ground truth ’super-radar’ intensity to proba-
bility given in Eq. 1 of the main paper. Denote by zi the
complex value of the ith pixel of the ground truth reference
image. We assume that zi is a complex Gaussian random
variable with zero mean and variance that could be either
of noise or a signal, denoted by σ2

n and σ2
s , respectively.

The intensity (energy) of a complex Gaussian random vari-
able has Chi-square distribution with 2 degrees of freedom.
Let H0 and H1 denote the hypotheses that the ith pixel is
a noise or signal pixel, respectively. Then the probability

density function of the ith pixels’ intensity given each hy-
pothesis can be expressed as

p(|zi|2
∣∣H0) =

1

2σ2
n

e−|zi|2/(2σ2
n), (4)

p(|zi|2
∣∣H1) =

1

2σ2
s

e−|zi|2/(2σ2
s). (5)

The probability mapping of the ground truth refer-
ence intensity is the posteriori probability density function
p(H1||zi|2). From Bayes rule and the law of total probabil-
ity we have that

p(H1

∣∣|zi|2) = p(|zi|2
∣∣H1)p(H1)

p(|zi|2)
=

p(|zi|2
∣∣H1)p(H1)

p(|zi|2
∣∣H1)p(H1) + p(|zi|2

∣∣H0)p(H0)
. (6)

By substituting (4) and (5) into (6), and by assuming that
p(H0) = p(H1) = 0.5 we arrive at

p(H1

∣∣|zi|2) = e−|zi|2/(2σ2
si

)

e−|zi|2/(2σ2
s) +

σ2
si

σ2
n
e−|zi|2/(2σ2

n)
, (7)

which is the probability mapping given in Eq. 1 of the main
paper.



References
[1] Oded Bialer, Amnon Jonas, and Tom Tirer. Code optimization

for fast chirp FMCW automotive MIMO radar. IEEE Trans-
actions on Vehicular Technology, 70(8):7582–7593, 2021. 2,
3

[2] Xu Dong, Pengluo Wang, Pengyue Zhang, and Langechuan
Liu. Probabilistic oriented object detection in automotive
radar. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 102–
103, 2020. 2, 4

[3] Ziqiang Tong, Ralf Renter, and Masahiko Fujimoto. Fast chirp
FMCW radar in automotive applications. In IET International
Radar Conference, pages 1–4. IET, 2015. 2

[4] Ao Zhang, Farzan Erlik Nowruzi, and Robert Laganiere. Rad-
det: Range-azimuth-doppler based radar object detection for
dynamic road users. In 2021 18th Conference on Robots and
Vision (CRV), pages 95–102. IEEE, 2021. 2, 3, 4


