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A. Derivation of the super-resolution con-

straint

In the following, we show how to solve the optimization

problem given in Eq. (8) using the method of Lagrangian

multipliers. We begin with the problem

ū = argmin
ū

1

2
ku� ūk2 s.t. Aū = y. (12)

To solve it, we introduce the Lagrangian

L(ū,λ) =
1

2
ku� ūk2 + λT (Aū� y), (13)

with lagrange multipliers λ. The gradient of the lagrangian

is given as

rūL = ū� u+ATλ. (14)

Furthermore, setting the gradient to zero, and solving for ū

results in

ū = u�ATλ. (15)

Inserting ū from Eq. (15) into the constraint gives

y = A(u�ATλ). (16)

By solving Eq. (16) for λ we obtain

λ = (AAT )−1(Au� y). (17)

And inserting λ from Eq. (17) into Eq. (15), gives us a so-

lution for ū

ū = u�AT
�

AAT
�

−1

(Au� y), (18)

which can be simplified as

ū =
�

I�AT (AAT )−1A
�

u+AT (AAT )−1y
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(19)

Using the definition of the pseudoinverse A† for full row

rank matrices

A† = AT (AAT )−1, (20)

we can further simplify Eq. (19) leading to our final solution

ū = (I�A†A)u+A†y. (21)

B. Scaling functions

In the following, we provide the full expressions of the

noise level parametrized scaling functions in our diffusion

model. Particularly, in our denoiser function Eq. (6)

Dθ(x;σ, s) = cskip (σ)x+ cout (σ)Fθ

�

cin (σ)x;σ, s
�

,
(22)

and our loss Eq. (7)

Es,x̃,σ,n

å

λ(σ)kDθ(x̃+ n;σ, s)� x̃k2
2

å

, (23)

we set

cskip(σ) = σ2

data /
�

σ2 + σ2

data

�

, (24)

cout(σ) = σ · σdata /
q

σ2

data + σ2, (25)

cin(σ) = 1/
q

σ2 + σ2

data , (26)

and

λ(σ) = σ−2 +
1

σ2

data

, (27)

where σdata is the standard deviation of our training data.

We set σdata = 0.5, which is simply done through the nor-

malization of training images. A detailed discussion and

derivations of these noise level parametrized scaling func-

tions are provided by Karras et al. [18]. In essence, the

input scaling cin(σ) is set such that the inputs of Fθ have

unit variance. The output scaling cout(σ) is set such that the

effective training target of Fθ has unit variance. The skip-

connection scaling cskip (σ) is set such that the errors of Fθ

are amplified as little as possible. And the loss weighting

λ(σ) weighs loss terms equally across all noise levels σ.

C. Data preprocessing

When sampling patches from WSIs, we only consider

patches covering at least 10% tissue area. To segment tissue

from the background, we use FESI [4].
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Figure 9. Comparison of our method with multiple super-resolution methods. The first column shows the input image, each subsequent

column shows the upscaling result of a patch extracted from the center of the previous column. Best viewed digitally.

D. Comparison with different super-resolution

approaches

In this section, we compare upscaling with our approach

to established super-resolution methods. To this end, we

apply multiple iterations of 2å upscaling on an initial

512å512-sized image. In each iteration, we upscale a

512å512 patch extracted from the centre of the previous

iteration’s output. We compare with super-resolution ap-

proaches that follow multiple paradigms: TV-L1, which is

not learning-based; EDSR [22], which is learning-based but

not generative; and our method, which is learning-based and

generative. For EDSR, we retrained the model using the

same data as our method. Additionally, as a baseline, we

also show bicubic interpolation.

For our method, we show results with a relaxation pa-

rameter r = 0 and with r = 28. As discussed in the

main paper, without relaxation, i.e. r = 0, our method

closely resembles the zero-shot super-resolution approach

of DDNM [42], where the super-resolution constraint has

to be satisfied strictly. Contrarily, with the relaxation pa-

rameter r > 0, the model is not strictly bound to the super-

resolution constraint, allowing for a trade-off between con-

sistency with the low-resolution input image and introduc-

ing new details.

Figure 9 shows the results of our comparison. TV-L1

super-resolution produces sharper results than bicubic inter-

polation but still gives unsatisfying results for larger mag-

nifications. Similarly, EDSR fails to produce reasonable re-

sults for larger magnifications. The results of our method

without relaxation are much sharper than TV-L1 and EDSR.

However, particularly at larger magnifications, the results

no longer retain the structure of histopathological images.

Note how individual cells are barely visible at 64å magni-

fication. In contrast, with relaxation, even at large magni-

fications, results resemble the structure of histopathological

images much better, e.g. individual cells are clearly distin-

guishable.



E. Sampling

When sampling WSIs, we segment the initial image z0
into tissue and background areas using FESI [4]. And then

run the coarse-to-fine scheme only on patches that cover tis-

sue area. This helps us to reduce the overall sampling time

by skipping areas containing background. When stitching

patches back together, we fill background patches with the

background colour extracted from the segmentation.

F. Network

For the network Fθ(x;σ, s), we used the U-Net back-

bone from the implementation of Karras et al. [18], which

is based on the network of DDPM++ [38]. Tab. 3 shows

the parameters we used. We did the additional conditioning

with the spatial resolution s, in the same way as the noise

conditioning σ is implemented in the network. Hence, we

compute a sinusoidal positional encoding of the spatial res-

olution s in µm/px and push the result through embedding

layers. We then simply add the spatial resolution embed-

ding to the embedding of the noise and use the result for

following computations instead of the plain noise embed-

ding.

Parameter Value

Channel multiplier 64

Channel factor per resolution 0.5-1-1-2-2-4-4

Residual blocks per resolution 2

Attention resolutions {32-16-8}
Attention heads 4

Dropout probability 10%

Table 2. Network parameters

G. Training

Tab. 3 shows the parameters we used for training. Noise

σ during training was sampled from a log-normal distribu-

tion ln(σ) á N (Pmean, P
2

std).

Parameter Value

Learning rate 1å 10−4

Optimizer Adam

Batch size 64

σmin 0.002

σmax 80

ρ 7

Pstd -1.2

Pmax 1.2

Table 3. Training hyperparameters

H. User study - additional discussion

Figure 11 shows a visualization of the user study results

with the respective IDs for each individual WSI. We provide

a download to all 20 synthetic WSIs of the user study1. To

open the downloaded WSIs, make sure to use an appropi-

ate viewer, e.g. QuPath2. Table 4 maps the IDs in the user

study to the respective file IDs in the TCGA-BRCA dataset.

Furthermore, Fig. 10 shows a screenshot of the interface we

used for the study.

In addition to the discussion in the main paper, we want

to add a few remarks about the user study results. Upon

examining the results, one can see noticeable differences in

the performance of the three pathologists when identifying

the synthetic slides. The first pathologist consistently gave

ratings with a high degree of uncertainty. In contrast, the

other two seemed more confident in their decisions. No-

tably, while the first pathologist correctly identified all the

slides from the TCGA as real, the third pathologist mistak-

enly classified a few TCGA slides as synthetic with high

certainty. Even though there was a tendency for the pathol-

ogists to identify the synthetic slides, this suggests that it

was not trivial for the pathologists to differentiate the im-

ages. Therefore, we conclude that most synthetic WSIs did

not contain major, prominent image artefacts. This suggests

that grid-shift was effective at preventing stitching artifacts

and that our diffusion model did not generate completely

pathologically unplausible structures.

User study ID TCGA-BRCA ID

0 TCGA-A7-A4SD-11A-03-TS3.3781BE68-0CC3-446C-9DA9-35EC6FA954E4

1 TCGA-A7-A6VX-01Z-00-DX1.F74DA243-C65A-4997-BCA0-F1C89675978C

2 TCGA-A8-A09I-01A-02-BS2.ca9aacf2-573b-4af2-bc50-5213526eb3a3

3 TCGA-AN-A0FS-01A-01-TSA.ec030e02-fd7d-4683-803d-830ee80d8173

4 TCGA-AO-A03U-01B-02-BSB.dcb167f4-c3ab-4dcc-8f40-41c4ce453847

5 TCGA-AO-A0J5-01Z-00-DX1.20C14D0C-1A74-4FE9-A5E6-BDDCB8DE7714

6 TCGA-AR-A0TR-01Z-00-DX1.BBCE653F-7DD0-4830-BAD3-C06207A93853

7 TCGA-B6-A0IM-01A-01-BSA.e4fce1ac-0800-4e45-a3bc-f9bcb2ea825f

8 TCGA-B6-A1KC-01Z-00-DX1.4DD3E48B-F434-499F-9FF1-0FFD2883A375

9 TCGA-BH-A0BF-11A-02-TSB.6e4bf881-a29f-4fb4-b38c-5bebe44368ec

10 TCGA-BH-A0DD-11A-01-BSA.e9aae98d-ecf8-4d48-b1ca-f349013f2c42

11 TCGA-C8-A27B-01Z-00-DX1.5A8A14E8-6430-4147-9C71-805024E098CB

12 TCGA-C8-A8HP-01A-01-TSA.C1048607-5CC7-4798-AA55-55C78B31C10D

13 TCGA-E2-A15H-01A-01-TSA.6ba57309-1e15-4a84-98ad-5e8f02688a96

14 TCGA-E2-A15M-01A-01-TSA.41d14b10-8567-4f43-a5a8-b952d859c70f

15 TCGA-E9-A229-01Z-00-DX1.5B448B88-DA0C-44FF-87B3-20649A4A26FE

16 TCGA-EW-A1OX-01A-01-TSA.74283185-7c47-44ce-8904-1a121870104e

17 TCGA-EW-A1P5-01A-01-TSA.0fdc58ed-1cbd-4f60-839e-c12e1450e431

18 TCGA-GM-A2DI-01A-03-TSC.DB9E24D8-2B07-483E-A490-2B64240EFCEE

19 TCGA-OL-A66O-01Z-00-DX1.5F1E4C60-5CE8-41B4-A94D-4AA80D9253F9

Table 4. Mapping between the WSI IDs in the user study and their

IDs in the TCGA-BRCA dataset.

I. Downscaling operator

In the following, we show how the average-pooling op-

erator A and its pseudoinverse A† from Eq. (9) can be im-

plemented in PyTorch [42].

1https : / / drive . google . com / file / d /

1VpNFGgcw2iEYY4cbHrskQsjjwHMy47A9 / view ? usp =

sharing
2https://qupath.github.io/

https://drive.google.com/file/d/1VpNFGgcw2iEYY4cbHrskQsjjwHMy47A9/view?usp=sharing
https://drive.google.com/file/d/1VpNFGgcw2iEYY4cbHrskQsjjwHMy47A9/view?usp=sharing
https://drive.google.com/file/d/1VpNFGgcw2iEYY4cbHrskQsjjwHMy47A9/view?usp=sharing
https://qupath.github.io/


Figure 10. Screenshot of our user study interface. The participants

could freely navigate the shown WSIs through their full magnifi-

cation range.

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Image ID

Real

Synthetic
Real WSIs

0 1 2 3 4 5 6 7 8 9 10111213141516171819

Image ID

Synthetic WSIs

Pathologist 1 Pathologist 2 Pathologist 3

Figure 11. User study results with Image IDs. The IDs of the syn-

thetic WSIs correspond to the filenames in the provided download,

and Tab. 4 maps the IDs of the real WSIs to the respective IDs in

the TCGA-BRCA dataset.

1 def PatchUpsample(x, scale):

2 n,c,h,w = x.shape

3 x = torch.zeros(n,c,h,scale,w,scale) + x.view(n,c,h,l,w,l)

4 return x.view(n,c,scale*h,scale*w)

5

6 A = torch.nn.AdaptiveAvgPool2d(())

7 Ap = lambda z: PatchUpsample(z, scale)

J. Additional examples

In the following, we show additional WSIs generated by

our method. The shown patches are resized to 1024å1024.

To get a full impression about the quality of the gener-

ated WSIs, download the full-resolution WSIs from the user

study.



Figure 12. Synthetic WSI Figure 13. Synthetic WSI



Figure 14. Synthetic WSI Figure 15. Synthetic WSI



Figure 16. Synthetic WSI Figure 17. Synthetic WSI



Figure 18. Synthetic WSI Figure 19. Synthetic WSI



Figure 20. Synthetic WSI
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