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A. From to pix2pixHD to Robusta
A.1. Background on label-to-image translation

methods

Conditional Generative Adversarial Networks are are one
of the most popular tools for semantic image synthesis in
the literature [26]. These models consist of generators with
conditioning designed to control the models and generate
specific contents. The standard loss function for cGAN
training is defined as follows:

LcGAN (θG,θD) = Ex[logD(x | y)]+
Ez[log(1−D(G(z | y)))], (A1)

where y is the conditional information and θG and θD rep-
resent the weights of the generator and the discriminator,
respectively. In label-to-image translation, y is the input
label, x is the target RGB image, and z is a sampled latent
variable.

Pix2pix [18] is a type of cGAN specialized in image-to-
image translation tasks. It uses a U-Net [33] as backbone
and a PatchGAN [18] as discriminator. In addition to the
adversarial loss defined in Eq.(A1), an L1 loss, defined in
Eq.(A2), is added to the cost function of cGANs to reduce
blur:

LL1(θG) = E(x,y,z)[∥x−G(z | y)∥1]. (A2)

The total cost function of pix2pix is a linear combina-
tion of LL1 and LcGAN , with λ as a regularization hyper-
parameter that balances the cGAN and reconstruction losses:

Lpix2pix(θG,θD) = LcGAN (θG,θD) + λLL1(θG). (A3)

Pix2pixHD [44] improves the quality of the generated im-
ages thanks to enhanced multi-scale generators and discrim-
inators. Pix2pixHD splits the generator and discriminator
into two subGANs: G1 and D1, and G2 and D2. The loss
function consists of the pix2pix loss function completed by
a feature-matching loss and a perceptual loss. The feature-
matching loss LFM(θG,θDk) quantifies the distances be-
tween the feature maps of the real image x and the predicted
image. The feature maps are extracted from discriminator
layers denoted by i. The loss is defined as follows:

LFM (θG,θDk
) =

E(x,y,z)

I∑
i=1

1

Ni

∥∥∥D(i)
k (x)−D

(i)
k (G(z | y))

∥∥∥
1
, (A4)

where D
(i)
k stands for the ith-layer feature extractor of dis-

criminator Dk, I is the total number of layers, and Ni rep-
resents the number of elements in each layer. The percep-
tual loss is designed to measure the similarity between the
high-level features of the generated and real images. The
feature maps are extracted from the i-th layer of a VGG
network [36], FVGG, pretrained on ImageNet [8]. The per-
ceptual loss is defined as:

LVGG(θG) =

E(x,y,z)

N∑
i=1

1

Mi

∥∥∥F (i)
VGG(x)− F

(i)
VGG(G(z | y))

∥∥∥
1
, (A5)

where Mi is the number of elements of the VGG network,
and I is the number of layers on which we extract the feature
maps.

SPADE [28] introduces a novel conditional normalization
layer called SPatially-Adaptive (DE)normalization. In the
context of image synthesis, Park et al. [28] highlight that
deeper layers of DNNs can easily lose semantic information
due to the relative sparsity of semantic input. Since semantic
inputs exhibit low local variance, common normalization
methods like Batch Normalization [17] can inadvertently
remove semantic information. To avoid this issue, Instance
Normalization [42] can be used. Notably, these normal-
ization layers involve two steps: normalization and denor-
malization. In SPADE, Park et al. [28] propose learning
denormalization factors at the pixel level, which are depen-
dent on the label image y. Therefore, the output at site (n, c,
h, w) of the i-th SPADE layer is defined as:

γ
(i)
c,h,w(y)

a
(i)
n,c,h,w − µ

(i)
c

σ
(i)
c

+ β
(i)
c,h,w(y), (A6)

where µ
(i)
c and σ

(i)
c represent the mean and variance at the

instance or batch level. The activation a is normalized by
subtracting the mean and dividing by the standard deviation,
followed by a modulation using the learned parameters γ
and β. Finally, n, c, h, and w represent the number of the
image in the batch, the channel, height, and width of the
image, respectively.

A.2. Robusta’s loss functions

To train our model, we divide the training procedure into
two parts. We begin by training the first generator Gcoarse
using the original label maps to produce synthesized images.
Next, we use these synthesized images to feed and train the
second generator Gfine.
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Figure A1. Illustration of the first generator of Robusta, Gcoarse. The green blocks are detailed in Table A1.

Gcoarse - loss. We use the same loss functions as in Wang
et al. [44], namely Lpix2pix, LFM and LVGG:

Lcoarse = Lpix2pix + λFMLFM + λVGGLVGG (A7)

Gfine - loss. After training Gfine, we generate low-
resolution images ILR to be used in the training of Gfine.
We use the Least Squares Generative Adversarial Network
approach, as suggested in SRGAN [22], which yields the
following loss function:

(A8)LMSE
cGAN(θG,θD) = EIHR∼pIHR

[(1−DθD
(IHR))

2
]

+ EILR∼pILR
[DθD

(GθG
(ILR))

2].

The final loss for training Gfine reads:

Lfine = LMSE
cGAN + λFMLFM + λVGGLVGG (A9)

The hyper-parameters used to train both Gcoarse and Gfine are
reported in Appendix B.1.

A.3. Details on Robusta’s architecture

Figure A1 and Table A1 detail the architecture and tech-
nical specifications on the first generator of Robusta, Gcoarse.

Why splitting Gcoarse into two modules? Robusta in-
volves changing one of the submodules from Gcoarse with
a Segformer [46]. While we keep the global structure of
pix2pixHD [44] with a GAN generating outputs to be con-
catenated in the latent space of the main generative network,
the philosophy is completely different. The objective of
pix2pixHD was to be able to work at different resolutions,
possibly with a greater number of submodules. In our case,
the objective of the Segformer submodule is to leverage two
different architectures, which are known to focus on different
aspects of the data [27], and fuse their learned information
by concatenation. For instance, transformers [9] tend to learn
more about the context and low frequencies in the images.
With this in mind, we use the same input resolution for the
transformer and its convolutional counterpart, as opposed to
pix2pixHD.

Downsampling Block
Conv2D(in ch=35, out ch=64, kernel size=7)

Batch Norm(64)
ReLU

Conv2D(in ch=64, out ch=128, kernel size=3, stride=2)
Batch Norm(128)

ReLU
ResNet Block

Conv2D(in ch=256, out ch=256, kernel size=3)
SPADE(256)

ReLU
Conv2D(in ch=256, out ch=256, kernel size=3)

SPADE(256)
Upsampling Block

ConvTranspose2D(in ch=256, out ch=128, kernel size=3, stride=2)
SPADE(128)

ReLU
Conv2D(in ch=128, out ch=3, kernel size=3)

TanH

Table A1. Technical details on Gcoarse.

The interface between the two modules We use a dense
layer to project the output of the Segformer submodule to
the size of the latent space of its convolutional counterpart
to enable the concatenation of the activations. We also adapt
the number of channels to those of the latent activation of
the convolutional network using the fuse-conv proposed
by Xie et al. [46].

The usefulness of SPADE layers To reinject spatial infor-
mation, we incorporate SPADE in all the batch normaliza-
tion layers of the ResNet and Upsampling Block of Gcoarse.
Specifically, we use SPADE after the convolutions that come
after the concatenation of the Segformer output and the latent
space of the convolutional network.



B. Implementation details
B.1. Training hyperparameters

This section includes the hyper-parameters utilized in
the label-to-image translation, semantic segmentation, and
anomaly detection experiments. These hyper-parameters are
presented in Tables A2, A3, and A4. Our implementation is
based on PyTorch [29], and we plan to release our code to
the public.

C. Quality of the images generated by Robusta
C.1. Datasets, metrics & baselines

C.1.1 Datasets.

We performed experiments on well-established datasets in
label-to-image translation: ADE20K [48], COCO-stuff [3],
Cityscapes [6], KAIST [19], and ADE20K-outdoors [28],
a subset of ADE20k containing only outdoor scenes. In all
our label-to-image translation experiments, the images are
resized at the resolution of 256× 256, except for Cityscapes,
for which the resolution is set to 256× 512.

C.1.2 Performance metrics.

Following common protocol from prior label-to-image trans-
lation works [28, 37], we assess the quality of the generated
images with two primary metrics: the Fréchet Inception Dis-
tance (FID) and the mean intersection over union (mIoU).
FID measures the similarity of two sets of images based on
their visual features, extracted by a pre-trained Inceptionv3
model [38]. Lower scores correspond to better visual sim-
ilarity between the sets of images. The mean Intersection
over Union is used to evaluate the accuracy of semantic seg-
mentation DNN’s prediction and therefore provides hints on
the quality of the rendering. In addition, we evaluate the
quality of OOD detection on Outlier-Cityscapes using the
Areas Under the Precision/Recall curve (AUPR) and Un-
der the operating Curve (AUROC), following Hendrycks &
Gimpel [14].

To evaluate mIoU, we require a pre-trained DNN capable
of performing semantic segmentation. As in [28,37], we use
multi-scale DRN-D-105 [47] for Cityscapes, DeepLabV2 [5]
for COCO-Stuff, and UperNet101 [45] for both ADE20K
and ADE20K-outdoors datasets. For the KAIST dataset,
which only contains bounding box annotations of persons,
we evaluate the mean Average Precision (mAP) specifically
for the person class, using a faster R-CNN model [31] with
ResNet-101 backbone trained on the COCO dataset [23].

C.1.3 Baselines.

In this study, we compare Robusta with Pix2PixHD [44] and
six other state-of-the-art baselines: SPADE [28], CRN [21],

SIMS [30], CC-FPSE [24], LGGAN [39], and OASIS [37].
For each approach, we either reproduce the results if the
checkpoint is provided or retrain the models. In order to
obtain the most accurate comparisons, all models are trained
at the same resolutions.

C.2. Results of the experiments

C.2.1 Image quality results

We adopt the same evaluation protocol used in previous
studies on label-to-image translation [28, 37] to assess the
quality of our images. Specifically, we convert label maps
into RGB synthetic images and measure the FID and mIoU.
Table A5 shows that we achieve equivalent or superior per-
formance compared to state-of-the-art methods on most of
the datasets. Towards a more comprehensive evaluation, we
also include qualitative assessments of the synthesized im-
ages in Appendix G with multiple visual examples for each
dataset.

C.2.2 Domain adaptation results

The last column of Table A5 presents the results for domain
adaptation. To evaluate the effectiveness of our approach, we
use an object detection DNN trained on RGB images and test
its performance on infrared images using both Pix2PixHD
[44] and Robusta. Our results show that the mean average
precision (mAP) on Pix2PixHD-generated images is only
1.40%, but it significantly improves to 4.57% with Robusta.
These findings demonstrate the efficacy of our GAN cascade,
which not only improves label-to-image translation but also
enhances object detection performance across domains. For
more details on the experimental protocol and instructions
on how to use Robusta for this task, please refer to Table A3.

D. Background on morphology & editing
The field of mathematical morphology [35] is a well-

established nonlinear image processing field that applies
complete lattice theory to spatial structures.

Let x be a grey-scale image with the intensity at position
p denoted as x(p). Morphology involves two fundamental
operations, grey-level dilation, and grey-level erosion, which
are defined as follows:

εb(x)(p) = min
h∈B

(x(p− h)− b(h)), (A10)

δb(x)(p) = max
h∈B

(x(p− h) + b(h)). (A11)

In these equations, εb(x) and δb(x) represent morpholog-
ical erosion and dilation, respectively, using a given structur-
ing element b of support B [35]. The structuring element’s
geometry determines the operators’ effect, and for simplic-
ity, we consider uniform structuring functions formalized by



ADE20K AO Cityscapes COCO-stuff KAIST
Segformer B5 B5 B5 B0 B5
Learning rate 0.0002 0.0002 0.0002 0.0002 0.0001
Batch size 32 16 8 8 32
Resolution 286× 286 256× 256 512× 256 286× 286 256× 256
Weight decay 0 0 0.00001 0 0
Epochs 200
Random crop 256× 256 ∅ ∅ 256× 256 ∅
λVGG 5
λFM 5

Table A2. Hyperparameter configuration used in the training of Gcoarse. AO is ADE20K-outdoors.

ADE20K AO Cityscapes COCO-stuff KAIST
Learning rate 0.0002
Batch size 12 12 8 10 10
Resize resolution 256× 256 256× 256 512× 256 286× 286 256× 256
Weight decay 0
Epochs 100
Random crop ∅ ∅ ∅ 256× 256 ∅
λVGG 1 10 10 1 10
λFM 0.1 1 1 1 1

Table A3. Hyperparameter configuration used in the training of Gfine. AO is ADE20K-outdoors.

their support shape. More complex operators like opening
and closing can be obtained by applying these two basic
operators repeatedly.

Extending morphological operators to multivariate im-
ages, particularly color images or hyperspectral images, re-
quires appropriate vector-ordering strategies. Researchers
have developed various orders for multivariate images
[1, 4, 10, 43]. In this discussion, we focus on simplex or-
dering, like [10], but propose a lexicographic ordering based
on two components. First, we consider all non-instance pix-
els to be in the foreground, representing the smallest element
of the order. Second, it is essential to order classes based on
the editing task at hand. We recommend that classes repre-
senting small objects be assigned the highest values. Thus,
for example, on Cityscapes, we would have the following
ordering:

traffic sign > traffic light > person > car > cycle > truck > train.



Perturbation robustness Outlier detection
StreetHazards BDD Anomaly Cityscapes StreetHazards BDD Anomaly

Architecture Deeplab v3+ Deeplab v3+
Backbone ResNet 50 ResNet 101 ResNet 50
Output stride 8 8
Learning rate 0.02 0.1 0.002
Batch size 4 8 6
Epochs 25 80 15
Weight decay 0.0001 0
Random Crop ∅ (768, 768) (80, 150)

Table A4. Hyper-parameter configuration used in semantic segmentation experiments.

Method ADE20K [48] AO [28] Cityscapes [6] COCO-stuff [3] KAIST [19]
FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mIoU↑ FID↓ mAP↑

CRN 73.3 22.4 99.0 16.5 104.7 52.4 70.4 23.7 n/a n/a
SIMS n/a n/a 67.7 13.1 49.7 47.2 n/a n/a n/a n/a

pix2pixHD 81.8 20.3 97.8 17.4 95.0 58.3 111.5 14.6 55.4 1.4
LGGAN 31.6 41.6 n/a n/a 57.7 68.4 n/a n/a n/a n/a
CC-FPSE 31.7 43.7 n/a n/a 54.3 65.5 19.2 41.6 n/a n/a
SPADE 33.9 38.5 63.3 30.8 71.8 62.3 22.6 37.4 n/a n/a
OASIS 28.3 48.8 48.6 40.4 47.7 69.3 17.0 44.1 n/a n/a

Robusta (Gcoarse) 29.4 46.7 49.7 40.6 56.3 68.8 30.4 42.1 53.7 4.5
Robusta (Gcoarse, Gfine) 28.1 49.0 48.4 41.8 47.1 70.8 30.2 42.8 52.1 4.5

Table A5. Comparison across datasets. Our method outperforms the current leading methods in semantic segmentation (mIoU) and FID
scores on most benchmark datasets. AO is ADE20K-outdoors.

(a) x (b) δb1 (x) (c) δb2 (x) (d) δb3 (x) (e) δb4 (x)

Figure A2. Illustration of the results of image morphological editing. Figure (a) represents the results of label-to-image translation, and
Figures (b)-(e) represent the results of label-to-image translation applied to the dilated label maps with increasing structuring elements.



E. Ablation studies
E.1. Architectural choices

E.1.1 Ablation study on the architecture

Table A6 shows the results of an ablation study for the
different variations and improvements proposed by Ro-
busta on two datasets - ADE20K-outdoors [28] (AO) and
Cityscapes [6]. Specifically, we measure the impact of
replacing one of the submodules of Gcoarse with a Seg-
former [46], as well as the importance of using SPADE [28]
layers in Gcoarse, and Gfine, and the interaction with the
new generator Gfine. The table reports FID and mIoU met-
rics, which indicate the quality of the generated images
and the accuracy of the segmentation, respectively. The
best-performing method is highlighted in the table and corre-
sponds to Robusta with all the proposed architectural contri-
butions. It achieves the lowest FID and highest mIoU scores
for both datasets, specifically, it improves the FID by 19.4%
and the mIoU by 19.6% on AO, and 30.3% and 13.4% on
CS for the FID and the mIoU respectively.

Comparing the results, we can first observe that replac-
ing the backbone of the submodule of Gcoarse significantly
improves the performance of the model by 17% of FID and
13.5% of mIoU on AO and 11.1% FID and 11.4% mIoU on
CS. Second, adding Gfine overall improves results and yields
improvements, for instance, 3.2% of mIoU on AO and 6%
of mIoU on CS, despite an increase of 3.5% of the FID on
AO and a decrease of 1% of the mIoU on CS. Using SPADE
layers also improves results overall.

In conclusion, the ablation study results show that the
addition of architectural contributions such as the Segformer
submodule, SPADE layers, and Gfine can significantly im-
prove the performance of the generating model for semantic
segmentation tasks. Furthermore, the best results are ob-
tained by using all the architectural contributions together
in the Robusta model, which achieves the lowest FID and
highest mIoU scores on both datasets. These results high-
light the effectiveness of the proposed Robusta model for
label-to-image tasks and demonstrate the importance of our
architectural contributions to improve model performance.

E.1.2 Size of the Segformer

In this section, we investigate the influence of the size of
the Gcoarse network on the performance of (Gcoarse, Gfine) on
Cityscapes and ADE20K. To do so, we experiment with dif-
ferent sizes of Gcoarse based on Segformer [46], which offers
five variants ranging from the lightest B0 to the heaviest B5.
We report the results for all Segformer models in Table A7.
Our findings show that increasing the complexity of the Seg-
former model leads to a higher mIoU score; however, this
may not hold true for the FID. Additionally, we observe that
the lightweight B0 variant performs well enough with lower

SegFormer SPADE 1 SPADE 2 Gfine
ADE20K-outdoors Cityscapes
FID ↓ mIoU ↑ FID ↓ mIoU ↑

✗ ✗ ✗ ✗ 67.8 22.2 77.4 57.4
✓ ✗ ✗ ✗ 50.8 35.7 56.3 68.8
✗ ✓ ✗ ✗ 55.1 33.6 63.9 64.4
✗ ✗ ✗ ✓ 52.3 30.5 67.5 60.9
✗ ✓ ✓ ✓ 52.4 37.7 53.6 67.5
✓ ✗ ✗ ✓ 54.3 38.9 50.0 67.8
✓ ✓ ✗ ✓ 49.6 39.2 47.9 66.1
✓ ✗ ✓ ✓ 56.5 41.0 48.0 68.3
✓ ✓ ✓ ✓ 48.4 41.8 47.1 70.8

Table A6. Ablation study of each architectural contribution.
Last row corresponds to Robusta. SPADE 1 is for SPADE in Gcoarse.
SPADE 2 is for SPADE in Gfine.

Segformer ADE20K AO Cityscapes
FID ↓ mIoU ↑ FID ↓ mIoU ↑ FID ↓ mIoU ↑

B0 34.4 37.62 53.05 33.79 49.60 66.53
B1 32.29 38.94 52.73 35.56 49.5 65.74
B2 32.04 39.51 50.09 37.15 50.01 67.84
B3 30.98 40.84 51.57 36.52 49.58 67.92
B4 31.71 41.37 50.80 36.89 48.56 68.14
B5 30.30 43.93 49,65 40,58 56.34 68.76

Table A7. Performance of Robusta with different SegForm-
ers [46]. The largest Segformer, B5, yields the best results. AO is
ADE20K-outdoors.

complexity, which can be a good option for when resources
are limited.

E.1.3 Usefulness of Gfine

To evaluate the effectiveness of Gfine, we perform an analysis
in the Fourier domain on 500 images from the Cityscapes
validation set [6]. For each image, we compute the fast
Fourier transform of the ground truth, the output of Gcoarse,
and of Gfine. We then analyze the distance between the
spectra of the generated images and the ground truth. Figure
A3 presents the mean distance among all the Fourier domains
for three scenarios: one considering all the complete spectra
and two considering only high frequencies.

As shown in Figure A3, Gfine yields a closer represen-
tation of the original image than Gcoarse for all cases. In
particular, we see that this analysis holds for high frequen-
cies (with a filter_rate of 2).

E.2. Training choices

E.2.1 Ablation study on the perceptual losses

In this discussion, we explore the importance of percep-
tual losses in our experiments. Table A3 illustrates that
for Cityscapes and ADE20-Outdoors, the best results are
achieved when the values of λVGG and λFM are 1 and 0.1,
respectively. However, for ADE20K and COCO-stuff, larger
values of λVGG and λFM (10 and 1, respectively) lead to the
best performance. Additionally, we present an ablation study



Figure A3. Frequency analysis of the usefulness of Gfine. Fil-
ter rate represents the cutoff frequency of the high-pass filter.
Filter rate = 0, No filter. Filter rate = 1, Low cut-
off frequency. Filter rate = 2, High cutoff frequency.

λVGG
Cityscapes ADE20K

FID ↓ mIoU ↑ FID ↓ mIoU ↑
10.0 47.10 70.8 34.6 45.2
1.0 55.4 68.6 28.1 49.0
0.1 59.8 65.9 35.8 42.7

Table A8. Performance of the semantic image synthesis of
Pix2PixHD for different values of λVGG. Experiments done on
the second-stage training part of Gfine only.

on the impact of λVGG in Table A8. This study highlights the
different responses of Cityscapes and ADE20K to changes
in λVGG. We believe that small and specific datasets like
Cityscapes and ADE20-Outdoors pose a particularly chal-
lenging problem, where the key features required to generate
photo-realistic images may not be easily captured by the net-
work. In such cases, perceptual losses are vital to guide the
learning process and achieve good results. Conversely, larger
datasets like COCO-stuff and ADE20K provide enough sam-
ples for the network to learn by itself, and perceptual con-
straints can be relaxed to promote diversity in the image
generation process.

E.2.2 Ablation study on the data augmentation

In this section, we investigate the impact of data augmenta-
tion for label-to-image translation on Cityscapes. We note
that OASIS employs LabelMix [25] data augmentation. Sev-
eral mixing techniques have been proposed for tasks like
semantic segmentation and semi-supervised learning, includ-
ing CutMix [12] and Superpixel-mix [11], which is designed
to improve the robustness of semantic segmentation. We
present the results of applying data augmentation during the
training of Robusta, composed of Gcoarse and Gfine only, in

Data augmentation FID ↓ mIoU ↑
Pix2PixHD w/ SegFormer (B5) 56.34 68.76
Robusta (B5) + CutMix 51.02 63.02
Robusta (B5) + LabelMix 44.39 67.25
Robusta (B5) + SuperPixelMix 45.38 67.46

Table A9. Performance of Pix2PixHD and Robusta on
Cityscapes with different data augmentations.

Table A9. We find that mixing data augmentation improves
the FID but reduces the mIoU. LabelMix greatly enhances
the FID, at the cost of a significant drop in mIoU. Superpixel-
mix appears to strike the best compromise. However, due to
their poor performance on mIoU, we decide not to employ
these strategies.



Dataset Model mIoU
Cityscapes 76.5
Cityscapes + Corrupted-CS SPADE 76.0
Cityscapes + Corrupted-CS OASIS 77.1
Corrupted-CS Robusta 41.7
Cityscapes + Corrupted-CS Robusta 78.4

Table A10. Aleatoric uncertainty study on Cityscapes-C, Foggy
Cityscapes [15] and Rainy Cityscapes [34].

F. Discussions
F.1. On the importance of high-quality image gen-

eration for semantic segmentation

To evaluate the quality of images required for training a
DNN, we train a Deeplab v3+ network using images gen-
erated by various cGANs. Our training protocol involves
two steps and two DNNs, namely a student DNN optimized
by backpropagation and a teacher DNN optimized by ex-
ponential moving average (EMA) [40]. The two training
steps were conducted in parallel and involved classical su-
pervised training on all data as well as training on images
through pseudo-annotation with the teacher’s DNN. This
training protocol allowed the DNN to consider issues related
to image synthesis.

Table A10 displays our results using different image gen-
eration techniques. Our findings indicate that when com-
bined with real images, the Robusta-generated dataset offers
the best performance. However, it is worth noting that us-
ing solely the images generated by Robusta did not result
in ideal performance. Nevertheless, these results should be
considered in relation to the performance of a model trained
on GTA [32], which yields around 31% of mIoU.

F.2. On semantic segmentation and uncertainties

To achieve the goal of improving safety, it is necessary
to not only improve the generalization properties of our al-
gorithms, which translates, for instance, into an increase of
the accuracy on corrupted datasets but also enhance their
anomaly detection capabilities. To do so, it is crucial to
address the issue of uncertainties in semantic segmenta-
tion [7, 20]. In other words, to improve both generalization
and anomaly detection, our algorithms must be able to han-
dle and be robust to uncertainties in semantic segmentation.

Let us begin by introducing the uncertainties that occur in
semantic segmentation [7, 20]. As learning algorithms, they
are confronted with uncertainties, which can be categorized
into two types: aleatoric and epistemic uncertainties [13].

Aleatoric uncertainties [16] are related to the data and
are caused by natural variation or lack of information. In
semantic segmentation, they would mostly correspond to
unclear object borders or to corruptions in the test data.

Architecture MA ↓ Params ↓ VRAM ↓
Pix2PixHD 161.4 188.1 24
SPADE 272.5 98.6 256
OASIS 296.8 93.4 128
Robusta w/o Gfine 393.6 98.6 34
Gfine 297.3 50.5 24

Table A11. MA: Mult-Adds corresponds to the number of Giga
multiply-add operations of a forward pass through both the gen-
erators and discriminators with a single input. Params: total
number of parameters (in million) of the generators and dis-
criminators combined. VRAM: memory (in GB) required for a
forward/backward through both the generators and discriminators.
MA and Params are estimated with Torchinfo [41].

Epistemic uncertainties [16] arise when the model is ill-
constrained, that is that the outputs are not properly defined
by the minimization of the loss on the training set. This
would correspond to unknown shapes or textures on the
inputs involving mispecified outputs.

F.3. Training speed

Our aim is for the algorithm to not only produce realistic
images and perform well in terms of robustness but also to be
scalable and require a reasonable amount of computational
resources that match the complexity of the task at hand. To
further explain this point, we analyze the balance between
the training time and the FID score of the latest and most
competitive algorithms for image-to-label translation. The
results, as depicted in Figure A4, show that Robusta is posi-
tioned in a favorable spot. Compared to Pix2PixHD, it has
fewer parameters, faster training time than OASIS, and a bet-
ter FID score than other algorithms. By incorporating Gfine,
the training time is slightly affected, but there is a signifi-
cant performance improvement. It’s important to note that
the reason for OASIS’s low training time is due to the per-
pixel discriminator that predicts full-resolution segmentation
maps, which requires a large amount of VRAM, as shown in
Table A11. Additionally, the LabelMix data-augmentation
strategy utilized by the algorithm is not as efficient when it
comes to GPU usage.

Table A11 provides additional information on other rel-
evant metrics about scalability. It should be noted that the
number of parameters and VRAM is more closely related
to space complexity. Since our training process involves
two stages, the effective number of parameters/VRAM ex-
perienced during training corresponds to the values of the
first stage, which is a bottleneck due to the lighter weight of
Gfine compared to Gcoarse. Overall, Robusta is comparable
to SPADE and OASIS in terms of the number of parameters
and Mult-Adds. However, our algorithm utilizes only half as
much VRAM as OASIS.
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Figure A4. Computation cost and performance trade-offs for
several image-to-image translation techniques on Cityscapes.
The y-axis shows the FID and the x-axis shows the training time
for one epoch with a batch size of 4. Training time is averaged over
5 epochs. The circle area is proportional to the required VRAM in
GB to train the model. In the case of Robusta, Gcoarse and Gfine are
trained sequentially and the required memory corresponds to the
heaviest generator, Gcoarse. The best approaches are closer to the
upper-left corner.

F.4. Evaluation protocol

Comparing the results of generative networks is often
challenging, and thus either the FID or mIoU are commonly
used. While human assessment is also used for qualitative
validation, it can be time-consuming, and evaluators may
introduce biases.

We note that the mIoU could also have a bias. Indeed, we
see that most of the techniques outperform the network mIoU
trained on the training set and tested on the real validation
set. More specifically, the mIoU of DRN [47] on Cityscapes
equals 66.35%, the one of Deeplabv2 [5] on COCO-stuff
is 39.03%, and the one of UperNet101 [45] on ADE20K is
42.74%. Hence, the approaches that beat these values can
transform the validation set into a training set.

In their work on domain adaptation, Ben David et al. [2]
mention the divergence between the distribution of the target
domain and that of the source domain, which would limit the
empirical risk for the target domain. It seems that modern
approaches are finding ways to facilitate the transfer between
the source and target domains. One small concern is that
access to the label is necessary, which is still a problem.
However, it should be possible to replace it with a depth map
and generate RGB images from that depth map.

G. Qualitative results
In this section, we illustrate the comparison between

OASIS and Robusta with some visual examples. Experi-
ments are done on three datasets: Cityscapes [6] in Fig-
ure A5, COCO-stuff [23] in A6, ADE20K [48] in A7,
Outlier-Cityscapes in A8, Corrupted-Cityscapes in A9, and

KAIST [19] in Figure A10.
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Figure A5. Qualitative comparison of Robusta with other methods on Cityscapes.
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Figure A6. Qualitative comparison of Robusta with other methods on COCO-stuff.
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Figure A7. Qualitative comparison of Robusta with other methods on ADE20K.
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Figure A8. Qualitative comparison of Robusta with other methods on Outlier-Cityscapes.
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Figure A9. Qualitative comparison of Robusta with other methods on Corrupted-Cityscapes.
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Figure A10. Qualitative comparison of Robusta with other methods on KAIST.
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