
7. Supplementary Material
7.1. AutoEncoder Architecture

As explained in Sect 3.2, an autoencoder structure is
used to extract salient features from the DEM and to recon-
struct the DEM which is later used to perform pose estima-
tion (explained in Sect. 3.5 ). The AutoEncoder architecture
is shown in Table 4.

Operator Stride Filter Padding Output
Shape

Conv2D (1,1) (3,3) (1,1) 500 × 500
MaxPool2D (1,1) (2,2) (0,0) 250 × 250

Conv2D (1,1) (3,3) (1,1) 250 × 250
MaxPool2D (1,1) (2,2) (0,0) 125 × 125

Conv2DTrans (2,2) (2,2) - 250 × 250
Conv2DTrans (2,2) (2,2) - 500 × 500

Table 4: First four rows show the encoder, and next two
rows the decoder. Conv2DTranspose refers to the convolu-
tion 2D transpose operation within PyTorch that is used for
convolution with upsampling.

7.2. Differene Layer CNN Architecture

ResNet based CNN layers have been used before the
Difference Layer, to extract features of the anchor’s (pos-
itive or negative) yaw aligned embedding. As explained in
Sect. 3.4, the output Fdiff of the Difference Layer is sent to
a CNN to get a scalar value indicating the distance between
the two DEMs. The architecture of the CNN is shown in Ta-
ble 5, the input to this part of the model is a feature volume
of size 10× 1024× 1024.

Operator Stride Filter Padding Output
Shape

Conv2D (2,2) (5,5) (0,0) 64 × 510 × 510
Conv2D (2,2) (5,5) (0,0) 32 × 253 × 253
Conv2D (2,2) (1,1) (0,0) 4 × 127 × 127
Linear - - - 1 × 64516
Linear - - - 1 × 100
Linear - - - 1 × 10

Table 5: Architecture of the CNN used after the Difference
Layer.

In GPR-15 our method is better than LCDNet by 4% and
the KITTI-00 sequence we are the second best to LCDNet
by less than 1%. In Fig. 8, we show qualitative results for
Loop Closure on GPR-10 [32] and KITTI-08 [9].

7.3. Integration with Lio-SAM

Here we detail the experimental procedure to integrate
our proposed LDC pipeline into LIO-SAM . Similar to
OverlapNet, ScanContext we utilize the geometry of the
factor graph for the LDC task, for every new state xi+1

added to the factor graph a local area of 15m is searched

GPR10 Kitti08

Figure 8: Qualitative Results for Loop Closure on GPR-10 (left) and
KITTI-08 (right). The query point cloud is shown in the orange, the re-
trieved point cloud is shown in blue. Observe that our method is able
to register point clouds even with large displacements of 90◦ between the
query and retrieved point clouds. Note: The color given to the point clouds
are only for visual appeal and does not have a specific meaning.

and the closest subset of possible matches is recovered. Our
pipeline robustly estimates a viewpoint invariant loop from
these initial set of matches. We measure the distance (as
explained in Section 3.5) between the query all the point
clouds in the subset, if the sample with the closest distance
is lesser than a fixed threshold it is considered as a loop and
a new link would be added into the graph for optimization.

We test the integration of LIO-SAM on KITTI-08 se-
quence, please refer to video on our project page * for
demonstration. KITTI-08 is a challenging sequence con-
sisting of loops with a large change in view point such as
those with 90◦ and 180◦ (opposite side). Our method is ca-
pable of handling such large changes in viewpoint, a quali-
tative sample of the DYT response is shown in Fig. 9.

7.4. Runtime Analysis

The time required to pass through the Encoder and De-
coder CNN is 1.7×10−3 sec (encoder: 1×10−3s, decoder:
7× 10−4 s). On the Kitti-08 sequence, FinderNet performs
complete LDCwith an average time of 223.24 ms (min time:
218.44 ms, max time: 227.15 ms). Our method works in
real-time and is competitive with the baselines: LcdNet [3]
takes 204.21 ms to complete LDC, and OverlapNet [4] com-
pletes LDC in 630 ms.

7.5. Ablation Study

7.5.1 Canonicalizer and DYT Performance Analysis

We independently evaluate the performance of the canoni-
calizer and DYT in this section. The experimental procedure
is as follows: (1) 100 pairs of point clouds from the GPR
dataset is sampled with poses less than 4m is sampled. (2) A
random yet known synthetic 3-DOF rotation of up-to 60◦

(in roll, pitch and yaw) magnitude is applied both the point
clouds. (3) The canonicalization procedure is performed
and the estimated relative rotation is recorded. (4) The es-
timated values are compared with the known rotations and
the mean of the absolute error values are obtained.. The
coarse RP canonicalization had an error of 3.249/4.1582

*https://gsc2001.github.io/FinderNet/

https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
https://gsc2001.github.io/FinderNet/


Anchor Positive Sample Yaw Aligned Anchor
R

ot
at

io
n

R
ot

at
io

n

Figure 9: DYT response visualization of the latent embedding. It can
be observed that the DYT predicts accurate yaw angles even and is able
to transform the latent embedding even for large rotation such as 90◦ or
180◦. Observe that for the 180◦ change in viewpoint the latent space
appears to be flipped post DYT.

(R/P) degrees while the fine alignment works with an error
of 1.2598/1.352 (R/P) degrees respectively. The DYT was
able to estimate the yaw with a error of 3.12◦.

7.5.2 Memory Analysis

It can be observed that our method bypasses the compu-
tationally expensive decompression procedure for LDC. To
measure the true gain in bandwidth we benchmark our
method against other point cloud compression techniques.
In Table 6 we report the bandwidth required to transfer
100 point clouds (100 as it is practical number of point
clouds that needs to transferred between agents) which is
of 500000 kB in size. The process of DEM creation itself,
has lead to a compression by a factor close to 166 (the DEM
requires 3000 (kB) of space) , and the latent embedding fur-
ther compresses this by five times, leading to a representa-
tion that requires 830 times less bandwidth in comparison
to the original point cloud (the embedding is of size 600
(kB)). Our method further leads to closely 1.6 times better
compression than [25] . Range Images are a popular form
of point cloud representation [4], a DEM is a sparse repre-
sentation in comparison to a Range Image and leads to an
improvement of 1.50 times. Methods such as [3] are not
meant for distributed setting, we however compare against
their latent space and observe a massive improvement by a
factor of 7000.

Table 6: Memory Benchmark Comparison (kB) Acronyms:
R Range Image, D DEM, E Latent Embedding

Input Size [25] [3] R D E

500000 1000 4220000 4500 3000 600

Figure 10: Drone A and B moving in sequence 4. Drone A holds
database of point clouds, while Drone B possesses query point clouds

7.5.3 Evaluation in Multi Robot Sequences

FinderNet finds extensive application in bandwidth con-
strained settings such as collaborative SLAM. To further
assess the robustness of FinderNet on point clouds with
SE(3) motion and demonstrate the significance of per-
forming LDC in the compressed space, we have developed
a multi-robot dataset named LUF-Multi. It consists of two
drones moving in the Sequence 4 environment shown in Fig.
10 and we use the model trained on Sequence:1,2,3 to per-
form LDC. Through this experiment, our objective is to con-
duct inter-robot loop detection LDC. The goal is to identify
situations where two or more robots revisit the same or sim-
ilar locations along their respective paths.

In Figure 10, we illustrate the setup where Drone A holds
a database of point clouds, while Drone B possesses the
query point clouds. Our objective is to determine whether
the point cloud observed by Drone B has been previously
encountered by Drone A. Every query point cloud would be
matched with all the point clouds in the database (similar to
protocol 2 in [3]). The average precision for the loop de-
tection task was found to be 0.62, and for loop closure, the
error was estimated as (1.53/26.84) (ATE/ARE). It is im-
portant to note that instead of transmitting the entire point
cloud between agents, we only transmit the latent space,
which is the output of the auto-encoder (ϕ), as explained in
Section 3.2. Additionally, the loop closure process operates
on the decoded DEM, as elaborated in Section 3.5.

7.6. The 6-DOF Experiment

A portion of literature solely work on loop detection for
SE(2) motion [4, 13], and recent methods such as [3] that
work on 6-DOF. However, there is no explicit experiment
designed to validate the performance of these algorithms on
6-DOF. Therefore, we design a novel experiment to vali-
date the performance of the loop detection algorithm for a
large 6-DOF change in viewpoint. The experimental setup is
as follows, a query point cloud A is to be matched against



Figure 11: The plots demonstrate the results for the 6DOF Experiment.
It can be clearly seen that while other methods’ AP values monotonically
decrease, our method is robust to large changes in viewpoint and has a
constant value.

a database set of point clouds {B}. We apply a synthetic
roll, pitch and yaw rotations to both A and {B}, and use
the augmented query and database point clouds to perform
loop detection. Average Precision is used as the evaluation
metric. The test is conducted on six levels of increasing dif-
ficulty. In the first stage a random Roll and Pitch rotation
between (−10, 10) is applied, in the second we apply a ran-
dom rotation between (−20, 20) and so-on until the sixth
where a random rotation between (−60, 60) is applied. The
rotated set of point clouds are fed into each of the algo-
rithms and the resulting Average Precision is recorded at
every level. [3, 4, 23, 28] are chosen for benchmarking as
they are expected to work with 6-DOF motion and KITTI
and GPR are used for testing. The results obtained are
shown in Fig. 11. We observe that with the increase in the
value of synthetic rotation all the baselines see a mono-
tonic drop in performance. However, our method main-
tains constant value of AP even for larger values of ro-
tation. The use of the canonicalization procedure is the
primary reason for the superior performance of our method.
This experiment demonstrates the robustness of our pipeline
for large change in viewpoints. It further highlights that
pure data-augmentation during training need not result in a
good performance in all scenarios. Note that although ran-
domly sampled rotations are used, we apply the same value
of rotation to all the algorithms. Even with a large rotation,
such as 60 degrees, our method performs better than LCD-
Net on an average by upto 90%.


