
Improving Graph Networks through Selection-based Convolution
Supplemental Material

1. Code
We provide code to demonstrate how to incorporate se-

lection into graph convolution layers. Specifically, we pro-
vide our code for SelGraphConv in Fig. 1. The code is im-
plemented in Python and incorporates PyTorch Geometric.
The code builds nicely on the existing framework. Selection
can be added to most graph networks in three simple steps:

1. Define selection weights during the initialization of the
network.

2. Pass selection values through the forward function.

3. Multiply corresponding selection weights during the
message-passing step.

All other aspects of the code can be inherited from the
original graph network. These steps are illustrated in our
provided code. Though we give a single example, these
same steps can be used to add selection to any existing
graph convolution layer.

2. Training Configurations
We provide details of the training configurations used for

our results to improve their reproducibility. The specific
configuration for each task is provided in the following sub-
sections. We will additionally provide code at the time of
publication.

2.1. Spatial Datasets

For both of the presented spatial tasks, the networks
trained for 60 epochs with a learning rate of 0.001 and 0.1
decay after every 20 epochs. We trained with a batch size
of 32 for MNIST and 16 for CoMA. The graph networks
contained 3 layers with a hidden size of 64, followed by a
linear output layer.

For both the MNIST Superpixels and CoMA datasets,
we used the train and test sets provided from PyTorch Ge-
ometric. We then split the training data randomly to gen-
erate validation data. For MNIST Superpixels, this gives
48K training graphs, 12K validation graphs, and 10K test-
ing graphs. For CoMA, this gives appoximately 15K train-
ing graphs, 3.5K validation graphs, and 1.5K testing graphs.

2.2. Traffic Prediction Datasets

For the METR-LA dataset, the networks trained for 30
epochs with a learning rate of 0.001 and 0.1 decay after
every 10 epochs. We trained with a batch size of 32. We
used a hidden size of 64 for our spatial GCNs.

In our evaluation, we used the masked metrics found
in TwoResNet [Li et al. 2022] and other works. For both
datasets, we used temporal splitting to generate the graphs.
We used a train/validation/test split of 72% / 8% / 20%.

2.3. QM9 Dataset

The configuration we used for DimeNet and SelDimeNet
matched the configuration from the original paper, specifi-
cally:

• Hidden Channel Size = 128
• Number of Blocks = 6
• Number of Bilinear Filters = 8
• Number of Spherical Filters = 7
• Number of Radial Filters = 6
• Max Distance Cutoff = 5.0
• Envelope Exponent = 5
• Number of Layers Before Skip Connections = 1
• Number of Layers After Skip Connections = 2
• Number of Output Layers = 3

For each individual target, the networks trained for
170000 steps (approximately 200 epochs). The learning
rate had 3000 steps of warm up, then the learning rate expo-
nentially decayed from 0.001 to 0.00001 over the training.
We trained with a batch size of 64.

We used the same train/validation/test split as the orig-
inal DimeNet implementation, including the same random
seed. Specifically, we trained on 110,000 molecules, vali-
dated on 10,000, and tested on 10,831.

3. Selection Ablations

In the paper, we presented results using a particular set of
selection functions. We present further findings with other
possible selection functions for each task.

1



class SelGraphConv(GraphConv):
def __init__(self, in_channels, out_channels, selection_count):

self.selection_count = selection_count
self.weight = Parameter(torch.randn(selection_count,in_channels,in_channels))
super().__init__(in_channels, out_channels)

def reset_parameters(self):
torch.nn.init.xavier_uniform_(self.weight)
super().reset_parameters()

def forward(self, x, edge_index, selections, edge_weight = None):
self.cur_selections = selections
return super().forward(x,edge_index,edge_weight)

def message(self, x_j, edge_weight):
for s in range(self.selection_count):

nodes = torch.where(self.cur_selections == s)[0]
x_j[...,nodes,:] = torch.matmul(x_j[...,nodes,:], self.weight[s])

return super().message(x_j,edge_weight)

Figure 1. Example code demonstrating how to add selection to an existing graph convolution layer in PyTorch Geometric. Note: self.weight
may need to use out channels instead of in channels if aggregation happens after a linear layer in the network.

3.1. MNIST Superpixels

We conduct an ablation over possible selection functions
on the MNIST Superpixel dataset. This includes varying
the number of directions in the selection function, as well
as experiments with distance selection. This ablation study
can be found in Table 1. These results show that changing
the number of directions does not have a significant impact
on the performance. Additionally, distance-based selection
does not perform as well as directional selection, but still
improves performance over the baseline.

3.2. Traffic Prediction

We conduct an ablation over possible selection functions
on the METR-LA dataset. This includes varying the num-
ber of distance bins in our selection function. Additionally,
we experiment with linearly separated bins by canceling the
exponential distance used in the dataset for edge computa-
tion. Lastly, we experiment with directional selection based
on the GPS coordinates of the sensors in the dataset. Again,
we find that the specific selection function used has mini-
mal impact on the final results, but that all selection func-
tions have significantly better performance than the baseline
network. Results of this ablation are shown in Table 2.

We also provide parameter and training time information
in Table 2. Since the traffic graph is static in the METR-
LA dataset (the sensors don’t move over time), the selec-
tion function only needs to be processed once. This means
only the repetition of the convolution and backprogation for
each selection weight is increasing the training time. Addi-

Table 1. An ablation of selection functions using the SelGraph-
Conv network. F1 scores are reported on the test set for MNIST
Superpixels.

Selection F1 Score
- 0.625

2 Directions 0.877
3 Directions 0.949
4 Directions 0.955
5 Directions 0.960
6 Directions 0.953
7 Directions 0.958
8 Directions 0.961
9 Directions 0.959
10 Directions 0.963
11 Directions 0.965
12 Directions 0.963
12 Directions 0.964
13 Directions 0.966
14 Directions 0.965
15 Directions 0.955
16 Directions 0.966
3 Distances 0.677
4 Distances 0.681
5 Distances 0.665

4 Directions + 4 Distances 0.957
8 Directions + 4 Distances 0.968



Table 2. The prediction of traffic speed (in mph) for a 3-layer SelGCN network using different selection functions. The mean absolute
error after different amounts of time is reported for the METR-LA dataset. Parameter and training information is also included.

Selection 15 Min 30 Min 60 Min # params training time
- 6.225 6.331 6.521 51.1 K 1.4 h

3 Log Distances 2.846 3.277 3.826 161 K 7.2 h
4 Log Distances 2.814 3.211 3.707 198 K 8.3 h
5 Log Distances 2.821 3.218 3.727 235 K 9.4 h
6 Log Distances 2.801 3.194 3.676 272 K 10.5 h
7 Log Distances 2.817 3.204 3.673 309 K 11.6 h

3 Linear Distances 2.840 3.262 3.798 161 K 7.3 h
4 Linear Distances 2.823 3.217 3.709 198 K 8.4 h
5 Linear Distances 2.831 3.214 3.703 235 K 9.3 h
6 Linear Distances 2.803 3.194 3.681 272 K 10.5 h
7 Linear Distances 2.829 3.204 3.677 309 K 11.6 h

4 Directions 2.838 3.219 3.719 198K 8.4 h
8 Directions 2.805 3.176 3.617 346 K 12.7 h

4 Directions + 4 Distances 3.091 3.348 3.751 530 K 19.2 h

Table 3. The mean absolute error of SelDimeNet with various selection functions on multiple QM9 molecular targets.

Target µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv
Selection \Units D a0

3 meV meV a0
2 meV meV meV meV meV cal

mol K
5 distances 0.030 0.046 23.6 18.3 0.458 1.35 9.43 8.83 8.89 9.28 0.024
8 distances 0.030 0.046 24.2 18.9 0.512 1.35 8.92 9.89 10.04 9.66 0.024
10 distances 0.029 0.047 22.8 18.8 0.487 1.33 9.72 9.57 9.34 9.92 0.025
3 angles 0.028 0.044 23.1 18.0 0.451 1.25 7.88 7.87 8.71 9.11 0.023
6 angles 0.028 0.046 24.4 18.3 0.455 1.27 8.00 8.32 8.25 8.59 0.024
9 angles 0.029 0.046 23.2 18.8 0.492 1.29 8.15 8.52 8.36 8.79 0.024
12 angles 0.031 0.049 25.0 19.7 0.531 1.32 8.74 8.45 9.05 9.56 0.024
5 dist & 3 ang 0.028 0.046 23.5 18.4 0.464 1.28 9.38 9.16 9.01 9.76 0.024

tionally, our traffic networks were trained on a single GPU
rather than a multi-GPU setup. Because of these factors,
these experiments are particularly well suited for demon-
strating how the number of parameters and training time
scale with the number of selections. The increase in time
for each added selection illustrates that the smallest pos-
sible selection number that gives the desired level of task
performance should be used.

3.3. QM9

For the QM9 dataset, we perform additional ablation
over the number of distance and angle bins used in the selec-
tion function. Interestingly, we find that no one number of
distance or angle bins performs consistenly better than other
selection functions. Those results are shown in Table 3.


	. Code
	. Training Configurations
	. Spatial Datasets
	. Traffic Prediction Datasets
	. QM9 Dataset

	. Selection Ablations
	. MNIST Superpixels
	. Traffic Prediction
	. QM9


