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(b)

Ins. Model object texture all
-* 96.5±0.1 90.8±0.4 94.6±0.1

BYOL 95.6±0.1 88.9±0.5 93.4±0.2

MoCoV2 95.5±0.4 88.9±1.1 93.3±0.7

RotNet(MLP head) 96.0±0.2 90.0±0.5 94.0±0.3

DistAug 95.5±0.1 87.9±0.2 93.0±0.1

(c)

Augmentation object texture all
cj 96.5±0.1 91.0±0.2 94.6±0.1

gb 95.8±0.1 90.5±0.2 94.0±0.0

cj+gb* 96.5±0.1 90.8±0.4 94.6±0.1

cj+gb+gs 96.0±0.0 89.9±0.3 93.9±0.1

cj+gb+so 96.4±0.1 89.5±0.2 94.1±0.1

cj+gb+gs+so 95.8±0.0 88.8±0.2 93.5±0.0

(d)

Batch Size object texture all
32 96.3±0.1 89.9±0.5 94.2±0.2

64 96.6±0.0 90.7±0.2 94.6±0.1

128 96.6±0.1 90.7±0.1 94.6±0.1

256* 96.5±0.1 90.8±0.4 94.6±0.1

512 96.2±0.1 90.8±0.2 94.4±0.1

(e)

Scales object texture all
c5 96.2±0.2 90.4±0.4 94.3±0.2

c4c5* 96.5±0.1 90.8±0.4 94.6±0.1

c3c4c5 96.3±0.1 90.1±0.2 94.2±0.0

Table 1. The localization performance of DS2 under (b) incorpo-
rating different instance pretraining models, (c) different augmen-
tation choices, (d) different batch sizes, and (e) different scales of
feature maps. The best results are bold-faced, and the choice used
in DS2 is marked with *. (“-”: no instance branch; cj: color jitter;
gb: Gaussian blur; gs: grayscale; so: solarize)

1. Detailed Results for Ablation Studies (b)-(e)

The detailed results for ablation studies (b)-(e) are pre-
sented in Table 1.

2. Implementation Details of DS2

We pretrain DS2 for 400 epochs. We use step sched-
uler with learning rate (lr) decay epochs set at 120, 160,

and 200; the decay rate is 0.1. We choose LARS op-
timizer as it is commonly used in SSL works [1, 5, 14].
The initial lr is linearly scaled with the batch size (bs):
lr = lrbase × bs/256, with the base learning rate (lrbase)
of 2.0 and bs of 256. The weight decay is set to 1e-5. The
data augmentation T includes random resized crop, hori-
zontal flip, color jitter, and Gaussian blur. All augmented
views are resized to 224 × 224 before being processed by
the encoder. The positive-pair distance threshold δ is set to
0.1.

3. Re-implementation Details of CutPaste(3-way)

We follow the reported implementation details in [9]
and reference the publicly available code1. The re-
implementation choices are listed below.

1. Model architecture

• The feature extractor is a ResNet-18 [7] ending
with average-pooling but without the last fully-
connected layer.

• The classifier consists of three fully-connected
layers, with batch normalization [8] and ReLU
activation in-between. The input dimension for
classifier is 512, the output dimension is 3, and
the intermediate dimensions are 512 and 128, re-
spectively.

• The training loss is three-way cross entropy loss.

2. Scheduling

• The optimizer is momentum SGD with learning
rate of 0.03, momentum of 0.9, and weight decay
of 0.00003.

• The scheduler is a single cycle of cosine anneal-
ing.

• The batch size is 96, and the model is trained for
256 epochs, with 256 steps in each epoch.

1https://github.com/Runinho/pytorch-cutpaste
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3. Data augmentation for 3-way classification

• The inputs for the model are 64×64 patches from
256 × 256 images. Color jitter is randomly ap-
plied to the patch.

• For normal CutPaste augmentation, the area ra-
tio of the patch with respect to the image is
randomly chosen from the range (0.02, 0.15).
The aspect ratio between the height and width
of the patch is randomly chosen from the range
(0.3, 1) ∪ (1, 3.3).

• For CutPaste-Scar augmentation, we make slight
adjustment to the patch size. The original paper
mentions that the patch size should be between
[2, 16] in width and [10, 25] in height. However,
this absolute size is selected for 256×256 image-
based training. As for 3-way classification, the
input is 64× 64 patch, so we accordingly reduce
the width to [1, 4] by a reduction ratio of 1/4, and
adjust the height to [5, 6] so that the patch holds
the scar shape. The patch is randomly rotated be-
tween [−45, 45] degrees before being pasted into
the image.

• For both augmentation methods, color jitter is ap-
plied to the patch with maximum intensity of 0.1,
and the paste-back location of the patch is se-
lected in a way that the patch can be fitted into
the image without being cut off.

4. Details on the Usage of Evaluation Datasets
• The MVTec AD is an industrial defect dataset, con-

taining five texture categories (e.g., leather, carpet) and
ten object categories (e.g., hazelnut, screw). The train-
ing set contains 3,629 anomaly-free (normal) images,
and the testing set contains 1,725 images that are ei-
ther anomaly-free or with anomalous regions. For each
testing image with defect, a pixel-accurate anomaly
ground-truth mask is provided. In our experiments, we
pretrain one model using all the 3,629 training images
regardless of their categories. After pretraining, the
learned model is evaluated against each category’s test
images.

• The MVTec LOCO dataset introduces logical
anomaly. However, since the DS2 and the baselines
are not designed for detecting logical anomalies,
we evaluate them on structural-anomalous and
anomaly-free test images only.

• The KSDD2 is a dataset of defective production items
with challenging “near-in-distribution” anomalies. It
provides anomalous images in the training set for su-
pervised training. However, as DS2 and the baselines

all perform self-supervised training using normal im-
ages, we train them only with the normal images from
the training set and then evaluate them on the whole
test set.

• The MTD dataset contains normal and five defective
types of magnetic tiles. We follow the common prac-
tice [10, 13] by taking 80% normal images for train-
ing and then evaluating on the rest 20% normal images
plus all the anomalous ones.

5. Related Works on Self-supervised Learning
Recently, SSL overtakes the dominance of ImageNet-

supervised [4] pretraining and provides a feasible solution
to learn representations without the need of manually la-
beled data. One can categorize SSL into two categories: (1)
instance-level representation learning and (2) dense-level
representation learning.

In the first category, each image is deemed as an indi-
vidual class, and the goal is to maximize the similarity in
the representation space between two views from the same
image (i.e., positive pair), while minimize the feature sim-
ilarity between views from different images (i.e., negative
pair) [1, 2, 6]. Grill et al. [5] proposed the BYOL model
which gets rid of negative pairs without causing model col-
lapsing. The authors owed its success to the additional pre-
dictor in the online branch and the moving-average param-
eter update fashion of its target branch. Later on, Chen et
al. [3] discovered that it is the stop-gradient design in the
target branch that prevents BYOL from collapsing, while
the moving-average design is more related to accuracy im-
provement than collapsing prevention.

In the second category, feature comparisons are per-
formed on the dense feature vector level to learn representa-
tions that are more compatible with dense downstream tasks
(e.g., semantic segmentation). Wang et al. [11] proposed the
DenseCL model, which extends SimCLR [1] and defines
positive and negative pairs on the granularity of individual
feature vectors. Xie et al. [14] extended BYOL and pro-
posed PixPro model. Different from BYOL, PixPro estab-
lishes positive pairs according to the geometric proximity
of feature vectors. Wang et al. [12] further enhanced dense
pretraining robustness with SetSim, where positive and neg-
ative pairs are set-based in order to include more semantic
and structural information.

6. More Qualitative Results of DS2 on MVTec
AD Dataset

We include more localization visual examples of DS2 on
each category of MVTec AD dataset in Figures 1–5. In each
figure, the first six rows show successful cases, and the last
two rows show failed cases.
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Figure 1. More localization visual examples of DS2 on, from left
to right, bottle, cable, and capsule categories. The first six rows
show successful cases, and the last two rows show failed cases.
The gt stands for ground truth, where anomalous parts are high-
lighted by a red mask.
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Figure 2. More localization visual examples of DS2 on, from left
to right, carpet, grid, and hazelnut categories. The first six rows
show successful cases, and the last two rows show failed cases.
The gt stands for ground truth, where anomalous parts are high-
lighted by a red mask.
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Figure 3. More localization visual examples of DS2 on, from left
to right, leather, metal nut, and pill categories. The first six rows
show successful cases, and the last two rows show failed cases.
The gt stands for ground truth, where anomalous parts are high-
lighted by a red mask.
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Figure 4. More localization visual examples of DS2 on, from left
to right, screw, tile, and toothbrush categories. The first six rows
show successful cases, and the last two rows show failed cases.
The gt stands for ground truth, where anomalous parts are high-
lighted by a red mask.
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Figure 5. More localization visual examples of DS2 on, from left
to right, transistor, wood, and zipper categories. The first six rows
show successful cases, and the last two rows show failed cases.
The gt stands for ground truth, where anomalous parts are high-
lighted by a red mask.
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