
Sound3DVDet Supplementary Material

1. More Discussion on LoFTR

A. Two Images from Different Viewpoints

B. Matching Points found by LoFTR

Figure 1. LoFTR extracted matching points visualization. A.
Two RGB images from different views. They contain large texture
homogeneous area, such as wall and ceiling. B. LoFTR manages
to give dense matching points even on these texture homogeneous
areas. We utilize such characteristic to give robust “matchness”
information to constrain the sound source to lie “on-the-surface”.

In our paper, we adopt LoFTR [6] to extract RGB image
feature embedding that is further used provide “matchness”
information across multiview RGB images. LoFTR [6] is
the model that is specifically trained for feature matching,
so it is naturally suitable for our need. Benefiting from its
coarse-to-fine learning strategy, LoFTR can find matching
points on texture homogeneous area. We show such an ex-
ample in Fig. 1, from which we can clearly see that dense
matching points are generated on the wall and ceiling. It
thus shows LoFTR [6] can provide dense“matchness” infor-
mation across multiview RGB images, even in texture homo-
geneous area. This property guarantees LoFTR still provides
“on-the-surface” matchness information on such texture ho-
mogeneous area. Moreover, The newly added Fully-connect

layer is capable of further optimizing the LoFTR generated
feature representation to better handle texture homogeneity
situation.

2. Extra Experiment Advised by Reviewers
For all the newly added experiments, we train all models

with the same experimental setting in the main paper. Each
model is trained three times independently.

2.1. GCC-Phat with STFT and MFCC feature

In the original main paper, we concatenate 6-channel
GCC-Phat with 4-channel LogMel scale spetrogram to repre-
sent one-view microphone array signal. As suggested by the
reviewer, we further replace the LogMel spectrogram with
STFT and MFCC respectively (but use the same GCCPhat
feature). The result is given in Table 1, from which we can
clearly see that using either STFT and MFCC inevitably
leads to reduced performance.

Table 1. Overall quantitative result on different audio spectro-
gram representation versions across all object categories and sound
classes.

Methods mAP (↑) mAR (↑) mALE (↓)
Sound3DVDet (STFT) 0.277 ± 0.011 0.995 ± 0.001 0.597 ± 0.004
Sound3DVDet (MFCC) 0.261 ± 0.012 0.991 ± 0.013 0.627 ± 0.003
Sound3DVDet 0.308 ± 0.011 0.998 ± 0.000 0.588 ± 0.001

2.2. Audio-only baselines

Table 2. Overall quantitative result on audio-only Sound3DVDet
versions across all object categories and sound classes. We also
show the three comparing methods result as all of them are audio-
only based.

Methods mAP (↑) mAR (↑) mALE (↓)
SELDNet [1] 0.101 ± 0.003 0.531 ± 0.000 0.912 ± 0.001
EIN-v2 [2] 0.111 ± 0.003 0.612 ± 0.001 0.877 ± 0.001
SoundDoA [3] 0.123 ± 0.001 0.701 ± 0.001 0.820 ± 0.003
SDVDet mvSound 0.264 ± 0.032 0.994 ± 0.002 0.592 ± 0.008
SDVDet oneSound 0.231 ± 0.021 0.891 ± 0.001 0.645 ± 0.014
Sound3DVDet 0.308 ± 0.011 0.998 ± 0.000 0.588 ± 0.001

In the ablation studies, we reported one audio-only
Sound3DVDet version: S3DVDet mvSound in which we
use multiview audio data (microphone array) to supervise
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the whole neural network. We have observed a signifi-
cant performance drop. To further test how Sound3DVDet
performs when we just involve a single view audio data
to supervise the whole neural network, we report another
Sound3DVDet version with one single view audio-only data,
we call this version S3DVDet oneSound, the result is given
in Table 2, from which we can clearly observe that remov-
ing multivew RGB images supervision inevitably reduces
the performance. Involving multiview audio-only supervi-
sion (S3DVDet mvSound) outperforms just involving one
view audio supervision (S3DVDet oneSound). This shows
the necessity of involving crossmodal RGB images in detect-
ing 3D sound sources.

2.3. Validation on the Usefulness of Deep Supervi-
sion

In the main paper, we show deep supervision improves
Sound3DVDet performance. The reason why we can use
deep supervision for Sound3DVDet is that the sound source
queries appear multiple times throughout the whole neu-
ral network. In the three compared methods, however, the
queries are predicted once. This is why we do not report
the comparing methods’ performance with deep supervision
in the main paper during the review period. In order to
test the impact of deep supervision on the three comparing
methods, we explicitly add two extra Transformer encoder
layers (the same setting as the Transformer encoder layer
in Sound3DVDet) on top of the three comparing methods,
then we add deep supervision to supervise all queries arising
from both the three comparing methods’ initial predictions
and two Transformer encoder layers. During test, we just
use the queries given by the Transformer layer to predict
sound sources. The quantitative result is given in Table 3,
from which we can clearly observe that involving deep su-
pervision strategy to three comparing methods unanimously
improves their performances, respectively (an average of
3% gain in mAP, 5% gain in mAR and 6% gain in mALE).
It thus shows deep supervision strategy helps learn better
sound source queries representation.

Table 3. Overall quantitative result on adding deep supervision to
comparing methods across all object categories and sound classes.
“ DeepSup” indicates training with deep supervision.

Methods mAP (↑) mAR (↑) mALE (↓)
SELDNet [1] 0.101 ± 0.003 0.531 ± 0.000 0.912 ± 0.001
SELDNet DeepSup 0.137 ± 0.001 0.552 ± 0.010 0.867 ± 0.002
EIN-v2 [2] 0.111 ± 0.003 0.612 ± 0.001 0.877 ± 0.001
EIN-v2 DeepSup 0.144 ± 0.013 0.689 ± 0.001 0.812 ± 0.005
SoundDoA [3] 0.123 ± 0.001 0.701 ± 0.001 0.820 ± 0.003
SoundDoA DeepSup 0.151 ± 0.002 0.745 ± 0.013 0.761 ± 0.002

2.4. Comparing with more baselines

We further compare with SALSA [5] and SALSA-Lite [7].
The two works focus on sound event detection and localiza-

tion (SELD) task and propose to extract log-linear spectro-
grams and normalized principal eigenvector to represent the
multi-channel microphone array data. We will add them to
the main paper. In addition to the two methods, we further
compare with SoundDet [4], which proposes to use learnable
filters to automatically extract feature from multi-channel
sound waveforms. The quantitative result is given in Table 4.
From this table, we can observe that SALSA [5] achieves the
best performance among all comparing methods, SALSA-
Lite [7] gives slightly inferior performance. Given the the
experimental finding in Sec. 2.3, we think introducing extra
deep supervision may further improve their performance,
respectively.

Table 4. Overall quantitative result on more existing methods across
all object categories and sound classes.

Methods mAP (↑) mAR (↑) mALE (↓)
SALSA [5] 0.147 ± 0.002 0.722 ± 0.002 0.793 ± 0.003
SALSA-Lite [7] 0.130 ± 0.012 0.712 ± 0.003 0.810 ± 0.002
SoundDet [4] 0.120 ± 0.012 0.674 ± 0.004 0.823 ± 0.003
Sound3DVDet 0.308 ± 0.011 0.998 ± 0.000 0.588 ± 0.001

2.5. Noise Discussion

Thanks for pointing out the experiment with noisy data.
The reason why we did not consider the noisy situation is that
we assume the environment is absent of noise pollution (as
the reviewer noted that the sound source is anechoic). In
reality, there are many ways that environmental noise affects
the data. Here we consider a simple case in which we add
a Gaussian noise (with mean 0 and standard deviation σ,
N (0, σ)) to the microphone array multi-channel raw wave-
forms (normalized into [−1., 1.]). We test two noise levels
with standard deviation σ = 0.05 and σ = 0.10 respectively.
The quantitative result of Sound3DVDet on such noise data is
given in Table 5, from which we can see that noise polluted
sound data inevitably reduces the performance. We think
extra process to explicitly suppress the noise is required to
minimize noise impact, which remain as a future research
direction.

Table 5. Overall quantitative result on noise test across all object
categories and sound classes. We omit the standard deviation report
for succinct report.

Methods Noise mAP (↑) mAR (↑) mALE (↓)
Sound3DVDet σ = 0.10 0.270 0.994 0.670
Sound3DVDet σ = 0.05 0.281 0.995 0.645
Sound3DVDet σ = 0.0 0.308 0.998 0.588

2.6. Model performance with increasing number of
sources

In the dataset we have collected, we report result on the
whole dataset where the number of sound sources ranges
from 1 to 5. To further figure out our model’s performance



w.r.t. to varying number of sources, we re-compute the
evaluation metrics based on sound source number. It is worth
noting that the sound source class is independently chosen
from the five sound classes corpus. The result is shown
in Table 6, from which we can observe that our proposed
framework does not exhibit obvious performance difference
for different sound source number in the environment when
the sound source number is not larger than 5. One future
work remains to be done is to involve more sound source
number in the environment. We cannot finish this test within
the rebuttal period due to the time limit.

Table 6. Overall quantitative result on sound source number
across all object categories and sound classes of our proposed
Sound3DVDet.

Source Num. mAP (↑) mAR (↑) mALE (↓)
1 0.307 0.997 0.587
2 0.310 0.998 0.588
3 0.312 0.997 0.587
4 0.309 0.997 0.589
5 0.310 0.998 0.588

Overall 0.308 0.998 0.588

3. More Discussion on Data Creation
We provide the statistics of our created dataset in Table 9

w.r.t. different physical object class. In this table, we can
observe that the “wall” and “ceiling” consist of the largest
portion of the dataset, which reflect the real scenario. We
split whole 6.2K dataset into 5.0K/1.2K for train and test
respectively.

It is worth noting that, although we lay the sound source
on specific physical object surface in this work, the sound
sources can lie on arbitrary physical surface. In another
word, the sound source placement is independent of physical
objects. In the main paper, we just provided four typical data
samples. In order to give readers a more direct and intuitive
understanding how the data and task look like, we provide
more data samples visualization in Fig. 3.

4. More Details on Train and Test
During train, we randomly select a reference view among

multiview inputs. The initial queries from multiview are
optimized, and the corresponding sound source queries in the
reference view is further optimized by passing through the
detection backbone neural network (B). Since we randomly
select the reference view for each iteration, every single view
is guaranteed to be sampled as reference view during the
multiple iterations training process.

During test, given a multiview input, we iterate over each
single view and treat it as reference view to do the inference.
Each inference is independent because we do the set-based
prediction. In another word, we do view-num independent
predictions for one multiview input.

5. Sound3DVDet Neural Network

5.1. Sound Source Query Generator Network

Sound source query generator Gmic takes as input 10
channel 2D feature map (of size [10 × 256 × 256]) that is
originally constructed by one 4-channel microphone array
input. It jointly outputs a 2D microphone array embedding
feature [512 × 16 × 16] and initial sound source queries
[16 × 512]. In our implementation, we adopt a sequence
of stride=2 2D convolutions to sequentially reduce the
feature map spatial resolution and accordingly increase the
feature size (in channel dimension). Each 2D convolution is
2DConv+BatchNorm+ReLu operation combination. In
total, we build 8 of these 2D convolutions. While the output
of the last layer is used as sound source queries, the output
of the penultimate layer is used as sound microphone array
embedding. The network architecture is given in Table 10
and we also provide the source code in the supplementary
material.

5.2. Transformer-based Detection Backbone

For the Transformer-based detection backbone B, we
adopt the standard Transformer encoder network which con-
sists of multi-head self-attention (MHSA) and feed forward
network (FFN). In our implementation, we stack 6 such
Transformer encoder layers. The detection backbone’s hy-
perparameter selection is given in Table 11.

5.3. Detection Head

Sound3DVDet detection head H takes as input the query
embedding to jointly predicts the the query 3D spatial po-
sition [x, y, z] and class label c. In our implementation, we
adopt two parallel multi-layer perceptron (MLP). The net-
work architecture detail is given in Table 12.

6. More Experiment Result

6.1. More Quantitative Result

The detailed quantitative experimental result w.r.t. sound
source class is given in Table 7. From this table, we
can see that our proposed Sound3DVDet stays as the best-
performing method among all comparing methods and other
Sound3DVDet variants for five out of six sound sources class
in terms of average precision (AP), six out of six for average
recall (AR). It thus shows our proposed Sound3DVDet is
suitable for 3D sound source detection task, it is capable of
handling various sound source classes.

The detailed quantitative experimental result w.r.t. physi-
cal object class is given in Table 8. We can observe from this
table that our proposed Sound3DVDet outperforms all other
Sound3DVDet variants across all physical object classes, in
terms of both mAP and mAR evaluation metrics. It thus



table wall chair ceiling

cabinet cabinet door door
ground truth position Sound3DVDet Sound3DV-ResNet SoundDVDet-noMVSup SELDNet

Figure 2. Qualitative Detection Result Visualization: We visualize the position of one detected sound source position by different methods as
well as its ground truth position. We recommend to zoom in for better visualization.

Cabinet Ceiling Chair Door Table

view num = 3, source num = 5 view num = 4, source num = 5 view num = 5, source num = 4 view num = 5, source num = 5 view num = 5, source num = 3

view num = 3, source num = 5 view num = 4, source num = 5 view num = 3, source num = 1 view num = 3, source num = 2 view num = 3, source num = 2

Figure 3. More Data Sample Visualization: Multiple 3D sound sources (red ball) are emitted by visually uninformative objects, we use an
acoustic-camera device to record the multi-view, multi-modal visual-acoustic scene. Each recording consists of an RGB image at a known
pose (green) and a four-channel microphone array (magenta). The number of sound sources and their classes are arbitrary. The sound
sources arbitrarily lie on texture homogeneous (top row) or discriminative regions (bottom row).

shows Sound3DVDet is robust to the physical surface where
the sound sources may lie on.

6.2. More Qualitative Result

We provide more qualitative result visualization in Fig. 2.
From this figure, we can clearly see that Sound3DVDet is
capable of accuractely detect 3D sound sources under var-
ious room scenarios. It is better at handling both texture-
homogeneous and texture-discriminative situation.



Table 7. Quantitative result w.r.t. each sound source classes.

Methods Telephone Siren Alarm Fireplace Horn-beeps Overall
AP AR ALE AP AR ALE AP AR ALE AP AR ALE AP AR ALE mAP mAR mALE

SELDNet [1] 0.091 0.526 0.915 0.092 0.530 0.914 0.103 0.527 0.914 0.109 0.537 0.908 0.108 0.536 0.909 0.101 0.531 0.912
EIN-v2 [2] 0.096 0.542 0.882 0.095 0.543 0.881 0.105 0.544 0.879 0.117 0.554 0.873 0.119 0.551 0.870 0.111 0.612 0.877
SoundDoA [3] 0.095 0.646 0.827 0.094 0.660 0.825 0.108 0.700 0.817 0.112 0.740 0.816 0.112 0.752 0.816 0.123 0.701 0.820
S3DVDet ResNet 0.221 0.995 0.588 0.304 0.969 0.553 0.074 0.927 0.592 0.290 0.998 0.584 0.292 0.997 0.587 0.236 0.977 0.581
S3DVDet mvSound 0.266 0.995 0.595 0.227 0.993 0.602 0.319 0.998 0.570 0.180 0.991 0.620 0.330 0.996 0.570 0.264 0.995 0.592
S3DVDet noDeepS 0.095 0.984 0.648 0.109 0.993 0.633 0.227 0.996 0.594 0.268 0.998 0.597 0.137 0.996 0.608 0.167 0.994 0.616
S3DVDet wMVIS 0.254 0.995 0.598 0.270 0.996 0.598 0.301 0.997 0.591 0.304 0.998 0.592 0.316 0.997 0.595 0.289 0.997 0.595
Sound3DVDet 0.308 0.999 0.603 0.320 0.998 0.579 0.332 0.999 0.581 0.322 0.999 0.587 0.222 0.997 0.588 0.301 0.998 0.588

Table 8. Quantitative result w.r.t. each physical object class.

Methods Table Ceiling Door Chair Wall Cabinet
mAP mAR mALE mAP mAR mALE mAP mAR mALE mAP mAR mALE mAP mAR mALE mAP mAR mALE

S3DVDet ResNet 0.198 0.818 0.585 0.168 0.733 0.475 0.298 0.917 0.556 0.227 0.742 0.487 0.259 0.925 0.571 0.227 0.780 0.538
S3DVDet mvSound 0.253 0.944 0.609 0.233 0.975 0.607 0.295 0.993 0.583 0.222 0.882 0.553 0.270 0.984 0.596 0.276 0.958 0.584
S3DVDet noDeepS 0.200 0.939 0.573 0.166 0.957 0.628 0.170 0.961 0.608 0.193 0.866 0.557 0.144 0.969 0.625 0.184 0.924 0.614
S3DVDet wMVIS 0.253 0.965 0.631 0.278 0.982 0.603 0.339 0.985 0.584 0.237 0.918 0.580 0.289 0.989 0.590 0.295 0.952 0.595
Sound3DVDet 0.267 0.977 0.616 0.304 0.988 0.601 0.348 0.991 0.578 0.222 0.924 0.611 0.293 0.992 0.582 0.300 0.974 0.583

Table 9. Created Multiview Microphone Array and RGB Images
Dataset Summary w.r.t. each Physical Object Category.

Object Texture-homo Texture-disc. source num. view num

wall 975 717 1-5 4
ceiling 727 614 1-5 4
table 464 461 1-5 4
door 712 702 1-5 4
cabinet 286 292 1-5 4
chair 100 222 1-5 4

sum 3264 3008 / /

Table 10. Sound Source Query Generator Gmic network illustration.
2D convolution kernel size is 3× 3 and the stride is 2.

in-channel num. out-channel num. feature size
10 32 [32, 256, 256]
32 64 [64, 128, 128]
64 128 [128, 64, 64]

128 256 [256, 32, 32]
256 256 [256, 16, 16]

MicArray Embed: Linear (256, 512): [512, 16, 16]
256 512 [512, 8, 8]

Avg Pooling: [512, 4, 4]
Query Representation: Reshape: [16, 512]

Table 11. Sound3DVDet detection backbone B network illustra-
tion.

Transformer Encoder Layer Num. 6
Head Num. 8
Token (query) Num. 16
FFN dim. 1024

Table 12. Sound3DVDet detection head H network illustration.

Layer Name input dim output dim output
Input: Queries [16, 512]
Position Regression Head

Linear + BN + ReLU 512 256 [16, 256]
Linear 256 3 [16, 3]

Classification Head
Linear 512 256 [16, classnum]
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