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1. Implementation details of MMD blocks

For each task, we establish pairwise connections with
K — 1 other tasks using pairwise MMD blocks, resulting in
C(K,2) additional blocks, where C' denotes combinations.
These blocks take the initial task predictions as inputs and
produce two predictions for each block, corresponding to
the involved tasks. We use the same MMD block used in [4]
with an attention mechanism for guiding message passing
between the two tasks. As shown in Fig. 8, each block
contains a convolutional layer that transforms the input into
feature representations (F}!, F?), an attention-guided gating
mechanism (G) refining task feature representations with
information from the other task, and finally, a decoder gen-
erating refined task predictions. During the training of these
additional MMD blocks, we freeze the backbone and the
initial task prediction layers from the PAD-Net and sepa-
rately train the MMD blocks using the respective tasks’ loss
functions.

Figure 8. Tllustration of the used pairwise MMD block. Y7,Yd
represent the initial task predictions for the two tasks. G denotes
the generated attention map which is used as guidance in the dis-
tillation.
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2. Implementation details for the auto-encoder

The architecture of our auto-encoder is designed to pro-
cess concatenated task-specific feature maps as input. Both
the encoder and decoder components of the auto-encoder
utilize fully convolutional designs.

Encoder architecture. The encoder segment consists
of four sequential blocks, each comprising a convolutional
layer followed by batch normalization and a Rectified Lin-
ear Unit (ReLU) activation. The convolutional layers make
use of 4x4 filters. The specific architecture is visually rep-
resented below:

RACXHXW — Conviss — BN — RelU
—> Convaysg — BN — RelLU
—> Convs1s — BN — RelLlU
— Convigzg — BN — ReLU — FCso

Decoder architecture. Mirroring the encoder, the
decoder also comprises four sequential blocks. However,
in place of standard convolutional layers, the decoder
utilizes transposed convolutional layers to reconstruct the
feature maps. Like the encoder, it employs batch normal-
ization and ReLU activation. The layout is as follows:

z € R12 — FCgpypmyw
— ConvTs12 — BN — ReLU
—> ConvTe56 — BN — ReLU
— ConvT58 — BN — ReLU — ConvTyc

Notation. Convj, denotes a convolutional layer with k
filters. ConvTy signifies a transposed convolutional layer
with k filters. All the convolutions use a stride of 2 and
SAME padding. BN refers to the batch normalization layer,
ReLU is used for the Rectified Linear Units, and FC;, indi-
cates a fully connected layer mapping to R”.



3. Implementation details for the baselines

For the LL4AL [5] baseline, we use task-specific feature
representations as input of a separate feed-forward network
that predicts the loss of the corresponding task. This net-
work is trained concurrently with the PAD-Net network us-
ing the loss function and the optimization strategy utilized
in [5].

For EquAL [2] baselines, we apply horizontal flipping
to the original image and make predictions for the flipped
version. Then, we revert the flipped predictions and com-
pare them with the predictions of the original image. For
classification tasks like semantic segmentation, saliency es-
timation, and edge detection, we calculate the pixel-wise
entropy between the original and flipped predictions. For
regression tasks like depth and surface normals estimation,
we employ differential entropy. We sum pixel-wise scores
to form the selection score for the image.

For PartAL [1], which involves partially selecting tasks
of a sample for labeling, we set the labeling budget for tasks
to be three times the labeling budget for images in the NYU
dataset and five times for PASCAL images. Doing so en-
sures a consistent total number of labeled tasks across all
our baselines.

4. Adapting to other MTL architectures

We apply our approach to the MTI-Net architecture [3].
We introduce pairwise MMD connections to tasks using the
initial task predictions at the highest scale (Scale 1/4). We
construct the same committee of refined predictions to de-
fine the inconsistency score. To extract diversity embed-
dings using the auto-encoder architecture, we input the fea-
tures from the same scale (Scale 1/4).
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Figure 9. Comparison of our proposed method using MTI-Net
with SOTA AL methods on the PASCAL dataset.

Fig. 9 shows similar baseline comparisons as our exper-
iments using the PAD-Net architecture. This suggests that

our approach can be easily adapted to alternative multi-task
network architectures featuring a similar two-stage struc-
ture.

5. Additional inconsistency experiments

In Eq. (1), we aggregate the scores of each committee
member into a single-task inconsistency score by selecting
the maximum value. To explore various aggregation ap-
proaches, we compare this method against averaging and
selecting the minimum in Tab. 2. The results indicate that
utilizing the maximum score yields the best performance.
As a result, we adopt this configuration in our experiments.

Min | Avg. | Max
Depth | 0.82 | 0.69 | 0.67
Norm. | 25.2 | 22.3 | 21.5
Segm. | 29.6 | 32.9 | 33.6
Loss 8.03 | 7.37 | 7.08

Table 2. Performance of networks after the final AL iterations,
using different task-score aggregation variants on the NYUD-v2.

6. Additional diversity experiments

Fig. 10 presents a comparison between two distance
functions d to use in defining the diversity score in Eq. (3).
We compare Euclidean and cosine distance, across various
feature dimension sizes. We observe that the lowest loss is
achieved using Euclidean distance with feature vectors of
dimension 512. Therefore, we use this configuration in our
experiments.
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Figure 10. Performance of networks after the final AL iterations,
using different distance functions and varying feature embedding
sizes on the NYUD-v2.



7. Ablation study on individual scores and ag-
gregation

To generate a unified selection score, we combine the
inconsistency-based scoring s and diversity-based scoring
div. Our final selection score is computed as the product of
these two metrics. In Fig. 11, we present an ablation study
to evaluate different approaches for combining these scores.
We examine four distinct scenarios: 1) using the inconsis-
tency score sy alone, 2) using only the diversity score div
alone, 3) averaging the single-task scores, and 4) taking the
maximum of the single-task scores. The results indicate that
while the inconsistency-based scoring s; alone yields bet-
ter performance than the diversity-based score div alone,
combining both yields the best overall results. Addition-
ally, when aggregating scores from individual tasks, taking
the maximum score slightly outperforms averaging.
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Figure 11.  Ablation study on individual scoring metrics
(inconsistency-based sy and diversity-based div) and two aggre-
gation strategies (averaging and taking the maximum)

8. Numerical active learning results

Due to the limited space in the paper, we present our AL
comparisons as plots. Tables 3 - 12 provide the numerical
values for Figures 4a - 4f and 5a - 5d from the main paper.
The mean and variances of three experiments trained with
different random initializations are presented.
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| [ 20 30 40 50 60 |

Random | 8.440.21 7.84£0.09 7.4+£0.13 7.0+£0.20 6.940.11
Core-Set | 8.1£0.12 7.6£0.19 7.2+0.11 6.5+0.06 6.3£0.13
RBAL 7.8£0.18 7.5+0.24 7.0+0.23 6.7£0.21 6.7£0.03
LL4AL | 8.0+0.05 7.3£0.05 6.7£0.08 6.2+0.04 6.24+0.11
PartAL 7.8£0.16 7.0£0.13 6.4+£0.07 6.0+£0.11 5.9+0.12
EquAL* | 8.240.17 7.7£0.06 7.3£0.21 6.6+0.09 6.44+0.10
Ours 7.5£0.17 6.840.10 6.24+0.16 5.7£0.05 5.4+£0.08

Table 3. Comparison of multi-task loss with SOTA AL methods on the PASCAL dataset. (Fig. 4a)

[ 20 30 40 50 60 |

Random 54.3+£0.29 57.3£0.17 57.9£0.35 58.8£0.28 60.0+0.25
Core-Set 55.3£0.22 58.1£0.28 58.5£0.11 59.2+0.14 61.0+0.27
RBAL 55.4+030 58.4+£0.21 59.5£0.25 60.2£0.31 62.2£0.29
LL4AL 56.4+£0.20 59.4+£0.22 60.1£0.22 60.8£0.22 61.9£0.16
EquAL-SS | 56.94+0.30 59.8+0.17 60.6+£0.30 61.1+0.12 62.5+0.27
PartAL 57.84£0.22 60.3+0.28 61.4+£0.29 62.3+£0.23 64.1+0.14
Ours 57.6£0.13 61.7£0.16 61.9£0.27 62.84£0.18 64.5+0.15

Table 4. Comparison of semantic segmentation (mloU) with SOTA AL methods on the PASCAL dataset. (Fig. 4b)

20 30 40 50 60 |

Random 64.3£0.27 66.0£0.28 68.0+0.15 68.6+0.11 70.5+0.25
Core-Set 65.2+0.07 66.3+0.19 68.8£0.06 69.5+0.19 71.2+0.10
RBAL 66.4£0.17 68.2£0.23 70.8£0.17 71.3£0.21 73.4£0.27
LL4AL 65.7£0.21 66.5£0.22 69.3+0.14 70.5+0.29 72.040.25
EquAL-ED | 66.1+£0.21 69.2+0.29 70.7£0.29 71.7£0.15 74.0£0.21
PartAL 65.8£0.28 68.8£0.21 70.3£0.17 71.3£0.19 73.84+0.29
Ours 67.4+0.11 69.3+0.16 71.7£0.11 72.2+0.29 74.2+0.19

Table 5. Comparison of edge detection (odsF) with SOTA AL methods on the PASCAL dataset. (Fig. 4c)

20 30 40 50 60 |
Random | 18.7£0.10 182£0.03 18.0£0.06 17.8£0.09 17.6+0.03
Core-Set | 18.6+£0.09 18.140.07 17.840.08 17.6+£0.02 17.5+0.07
RBAL 184+0.03 17.9£0.03 17.740.03 1754004 17.3+0.08
LLAAL | 18.6+0.08 18.0+0.05 17.940.09 17.740.06 17.4:0.08
EQuAL-SN | 18.5£0.09 18.0£0.10 17.9£0.03 17.7£0.09 17.5+0.05
PartAL 18240.04 17.8£0.04 17.6£0.05 17.420.05 17.3+0.04
Ours 18.3£0.07  17.6£0.07 17.5£0.02 17.320.07 17.1£0.04

Table 6. Comparison of surface normals estimation (mErr) with SOTA AL methods on the PASCAL dataset. (Fig. 4d)

20 30 40 50 60 |
Random 50.7+0.16  52240.07 53.0£0.30 54.1+£0.19 55.3+0.23
Core-Set 5124027 5294021 5364024 5474021 55.740.25
RBAL 52.3+0.15 53340.15 54.5+0.16 55340.11 56.7+0.17
LLAAL 52.6+0.16  54240.18 5524024 56.4+0.15 57.140.12
EquAL-HPS | 54.040.20 555+0.28 56.5£0.25 57.5+0.15 58.640.12
PartAL 53.74+0.07 55.040.19 56.0+£0.18 56.9+0.27 58.540.17
Ours 54.5+0.27 56.040.14 57.240.08 58.4+0.18 59.240.20

Table 7. Comparison of human parts segmentation (mloU) with SOTA AL methods on the PASCAL dataset. (Fig. 4e)



[ 20 30 40 50 60 |
Random | 56.3£0.44 60.1£0.24 6161027 62.2+028 62.8+0.31
Core-Set | 5824049 61.140.46 623+023 6294046 63.240.34
RBAL 5824041 61.14031 6234037 6294032 63.2+£0.41
LLAAL | 60.4£0.50 62.6+£0.31 6374047 6424025 64.5£0.47
EQUAL-SE | 59.9+0.47 6204044 63.14042 63.7+0.37 63.940.43
PatAL | 59.740.36 63.4+0.50 6434023 6504040 65.5+0.26
Ours 59.14£0.40 6334040 6494033 6574046 66.5+0.22

| [ 20 30 40 50 60 |
Random | 93+0.12 8.8+0.03 8.6+0.12 83+0.04 8.0+0.15
Core-Set | 9.2+£0.07 8.740.16 8.4+0.03 8240.05 7.9+0.05
EqQuAL* | 9.14£0.10 854007 83+0.14 8.040.13 7.8+0.20
RBAL | 9.1£0.13 8.6%0.15 82+0.16 80+0.12 7.8+0.13
LL4AL | 9.0£0.14 85+0.19 82+£0.07 7.7£020 7.6+0.03
PartAL | 8.9+0.08 84+0.12 7.9+0.12 7.5+0.08 7.3+0.07
Ours 8.7+0.16 824007 7.7+0.04 724016 7.1:+£0.06

Table 9. Comparison of multi-task loss with SOTA AL methods on the NYU dataset. (Fig. 5a)

20 30 40 50 60 |
Random | 21.2£030 24.6£0.30 26.3£0.31 27.9£033 30.1£0.35
Core-Set | 21.7+027 25.0+036 26.7+0.35 28.7+0.29 30.940.36
RBAL 2184023 2524037 27.24£0.22 283£0.25 30.540.25
EQUAL-SS | 23.0+£0.38 26.5+£0.37 28.6+£0.28 30.5£0.35 32.940.30
LLAAL | 22.6+023 26.2+0.39 28.0+£0.27 29.4+0.31 31.6%0.28
PartAL | 23.3+031 27.0+£0.34 29.3£021 31.6+£0.40 32.7+0.24
Ours 23.940.24  28.0+026 3044034 32.3+£0.23  33.6:£0.26

Table 8. Comparison of saliency estimation (mloU) with SOTA AL methods on the PASCAL dataset. (Fig. 4f)

Table 10. Comparison of semantic segmentation (mloU) with SOTA AL methods on the NYU dataset. (Fig. 5b)

20 30 40 50 60 |
Random | 0.88£0.009 0.85£0.006 0.83£0.003 0.82+0.014 0.81%0.004
Core-Set | 0.870.018 0.82+£0.019 0.79£0.016 0.77+0.009 0.75+0.012
RBAL 0.82+£0.007 0.80+0.020 0.76+0.017 0.74+0.012  0.73+0.004
EquAL-DE | 0.8240.012 0.78+0.017 0.75£0.016 0.72+0.017 0.7140.010
LL4AL | 0.83+0.001 0.80£0.009 0.78£0.007 0.74:£0.013 0.722:0.009
PartAL 0.79:£0.008  0.74£0.007 0.73£0.003 0.72+0.011  0.70::0.019
Ours 0.77£0.018  0.74£0.014 0.710.017 0.68=0.018 0.67+0.016

20 30 40 50 60 |
Random [ 28.4+0.07 27.340.05 26.840.09 25.6+0.15 25.0+0.19
Core-Set | 28.2+0.18 27.0+0.14 25.840.05 25.0+0.17 24.6+0.19
RBAL 25.9+0.11 24.840.07 24.0+0.07 23.540.11 23.1+0.11
EquAL-SN | 25.4+0.14 24240.10 23540.15 23.240.10 22.8+0.17
LL4AAL 27.0+0.17  25.940.08 25.1£0.11 24.3+0.17 23.840.08
PartAL 24.5+0.19  23740.13 22.8+0.07 22.5+0.19 22.3+0.10
Ours 24.9+0.12 23.140.13  22.5+0.09 21.8+0.14 21.540.08

Table 11. Comparison of depth estimation (mse) with SOTA AL methods on the NYU dataset. (Fig. 5¢)

Table 12. Comparison of surface normals estimation (mErr) with SOTA AL methods on the NYU dataset. (Fig. 5d)



