
Appendix A

Object Point Cloud Reconstruction Reconst. Error Segmentation Seg. Error Reference

Skull

IoU: 0.917 mIoU: 0.910

Engine

IoU: 0.931 mIoU: 0.729

Liver &

Gallbladder

IoU: 0.968 mIoU: 0.926

Shapes

IoU: 0.819 mIoU: 0.791

Sheet

IoU: 0.948 mIoU: 0.876

Figure 11. Continuation of Fig. 6. Examples of reconstructions generated by conditioning on the input Point Cloud. The Reconstruction

takes all non-empty classes to be the same. Reconstruction Error identifies over-reconstruction and under-reconstruction when compared

with the reference. Segmentation colors each class uniquely, resulting in a Segmentation Error anywhere it differs from the Reference.

IoU and mIoU values are averaged over all test data, not just the rendered examples.
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Figure 12. Examples of depth images of deformed objects and

random camera perspectives that are used as input to the system.

Objects Although our method is generally applicable to

3D reconstruction tasks, we focus our experiments on ob-

jects where detailed prior information exists, but the defor-

mation must be inferred at test time.

Each scene includes a Python script that applies a set

of random deformations to the scene within hand-crafted

bounds. Examples of these random deformations are shown

in Figure 4.

The Lizard is copyright of Javi Rodrı́guez under the

Creative Commons License and can be found at thingi-

verse.com/thing:3505006. The Stanford Bunny is copyright

of the Stanford Computer Graphics Laboratory.

Some objects (i.e. the Robot and Lizard) feature artic-

ulated deformations, while others feature continuous de-

formations (e.g. the Human, Rope, etc.) or a combination

of both. Several objects, such as the human, are nearly

symmetrical along some axis, yet incorporate a handedness

which may be difficult to detect.

Each scene contains a virtual camera that is oriented to-

wards the objects from a random position within a cone of

aperture 140 deg at a distance from the object between 100
and 200 units. A 96x96 depth image is captured from the

camera’s perspective, see Fig. 12. Gaussian noise with a

standard deviation of 0.1 units is added to the depth values

(the shortest dimension of each scene is ∼ 20 units).

Encoder Architectures In this context, an encoder is a

neural network that receives a point cloud as input and dis-

tils a latent encoding of the information in it. We test our

framework with 3 different encoder architectures. Point-

Net++ [31, 32] is a well-studied architecture for classify-

ing and segmenting point clouds. The PointNet++ encoder

contains 2 PointConv layers and a global max pool layer.

The PointTransformer [44] contains 5 transformer blocks.

DeepSDFs [30] autodecoder computes a latent encoding as

the result of a test-time optimization process. The input

point cloud is reinterpreted as the locus of points where the

signed distance should be zero. This allows an optimization

to find the latent code that best explains why the all points in

the point cloud have a distance of zero. While it is possible

to define the CE loss during training, at inference time only

the L1 loss can be optimized. We found this to be enough

to infer the segmentation. In all cases, the latent encoding

has length 1024.

Metrics The quality of the reconstruction depends on two

factors: 1) the quality of reconstruction itself, and 2) the

quality of it’s segmentation. In line with previous litera-

ture [34], we evaluate these factors with IoU and mIoU [10],

respectively. mIoU is defined for multi-class segmentation

as the average of IoU of each individual class, ignoring free

space. Multi-class IoU is computed by assigning all non-

empty classes to an occupied class in both the reference and

the prediction.

mIoU =
1
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(4)

Both metrics are calculated over all points in the evalua-

tion dataset.

Evaluation Data The evaluation dataset is created by dis-

cretizing the joint bounding box of all objects into a 1003

voxel-grid. As a performance optimization, points not

within the enlarged (by 50%) bounding boxes of any seg-

ments are discarded.

Hyperparameters: PontNet++ 28800 training exam-

ples, 128 test examples. Batch size of 40. Learning rate



of 0.0005. 300 epochs. 256 occupancy query points per

segment, 128 inside and 128 outside. n = k for SortSam-

ple. nuniform is chosen as 15% of total points. Variance

of Gaussian noise is 0.1. Latent vector has a size of 1024.

Positional encoding exponents in {−4, · · · 5}. For more hy-

perparameters, see Appendix B.

Hyperparameters: Transformer Same as hyperparame-

ters of PointNet++ method, see Sec. 5.

Hyperparameters: Autodecoder Same as hyperparame-

ters of PointNet++ method, see Sec. 5. With exception of:

Batch size of 64. Network learning rate of 0.0005. Latent

vector learning rate of 0.001. 1000 epochs. 75 latent vector

optimization steps at inference time. Dropout in MLP of

0.2.

Appendix C

Noise in Depth Camera We further investigate how the

quality of the reconstruction is affected by increasing noise

in the depth measurement. Data is generated for Robot with

3 different levels of Gaussian noise applied to the depth

values: 0.1, 0.5, and 2.0 units. PointNet++ is trained on

each dataset using CE+L1 loss, and all 3 models are cross-

evaluated on all other noise levels.

Table 3. IoU and mIoU values from PointNet++ trained using

CE+L1 loss on Robot with 3 different levels of Gaussian noise in

the depth values. Models trained with one noise level (given by the

row) are evaluated on another noise level (given by the column).

test → 0.1 0.5 2.0 0.1 0.5 2.0

0.1 0.882 0.581 0.346 0.864 0.541 0.289

0.5 0.852 0.852 0.763 0.829 0.830 0.734

2.0 0.808 0.816 0.815 0.781 0.789 0.789

train ↑ IoU mIoU

IoU and mIoU values are shown in Tab. 3. For compar-

ison with a maximum noise level of 2 units, the shortest

dimension for Robot is 5 units. Despite extremely noisy

point clouds, the network is able to reconstruct Robot ac-

curately, so long as an equivalent or higher level of noise is

seen during training. This may be beneficial to real world

applications, where an accurate depth measurement is not

always economical or feasible. Only if the noise signifi-

cantly exceeds the noise distribution in the training data is

reconstruction likely to fail.



Appendix D

Point Cloud Reconstruction Reconst. Error Segmentation Seg. Error Reference

Figure 13. Extension of Table 7. All reconstructions generated by conditioning the system trained on synthetic data using a real-world

input Point Cloud. The Reconstruction takes all non-empty classes to be the same. Reconstruction Error identifies over-reconstruction

and under-reconstruction when compared with the reference. Segmentation colors each class uniquely, resulting in a Segmentation Error

anywhere it differs from the Reference.


