
Supplementary Material for PromptonomyViT

In this supplementary file, we provide additional information
about our experimental results, qualitative examples, imple-
mentation details and datasets. Specifically, Section A provides
more experiment results, Section B provides qualitative
visualizations to illustrate our approach, Section C provides
additional implementation details, and Section D provides
additional datasets details.

A. Additional Experiment Results
We begin by presenting additional baseline results for all

datasets and tasks in (Section A.1). Next, we present additional
ablations (Section A.2) we performed in order to test the
contribution of the different PViT components.

A.1. Baselines Comparison
Here, we evaluate several alternative ViT approaches

(MViTv2 MT and MViTv2 VPT) to our task of using synthetic
data towards improving action recognition models. Additionally,
we report additional baselines that are comparable in compute
and size to further compare to other approaches in (see Table 5),
such as ORViT Mformer [11], UniFormer-S [20], SViT [2],
VideoMAE [31], Video SWIN Transformer [26], STIN [27],
and SAFCAR [17]. We can observe that our PViT approach
improves upon MViTv2 and is competitive with other strong
models. We note that even compared to VideoMAE, a recent
self-supervised learning method, our results are similar in AVA
(+1.3) and SSv2 (-0.3), although VideoMAE utilizes a larger
backbone and more computing for training. Finally, PViT can be
applied to any pretrained backbone, which gives it an advantage
over other methods.

A.2. Additional Ablations
Next, we provide additional ablations that further illustrates

the benefits of our PViT.
The importance of synthetic scene data. To examine how im-
portant the information provided by the synthetic scene data is,
we test the PViT model, but provide it with “useless” synthetic la-
bel information. Specifically, we run an experiment in which the
synthetic scene annotations are shuffled. As a result, the ground
truth of the instance-level is shuffled for each synthetic scene
task (e.g., for dense prediction tasks, the GT maps are shuffled).
This ablation obtained 63.4%, similar to the baseline (63.3%).
This is expected since wrong scene annotations are not likely to
provide additional benefit beyond the baseline. Moreover, the
model is capable of ignoring prompts if they are not required,
so they should not have a negative impact beyond the baseline.
Prompts for real-world data. Even though real-world datasets
are less reach in annotations compared to synthetic, PViT can
still use them if available. To examine this, we added 2D hand-
object boxes from SomethingElse as an additional auxiliary
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Figure 4. Dataset-Task Agreement. A polygon represents a real video
dataset, and the closer a vertex is to the circle border, the greater the gain
from using that synthetic task. The gains are scaled for comparison.

task along with its own prompt. This improved results by +1.2,
suggesting that real data, if available, is beneficial. Clearly, the
combination of synthetic and real data offers many promising
and interesting directions, and we leave those to future work.
Comparison to a pretraining approach. Another approach
for using synthetic datasets is first to pretrain on the synthetic
data, and then finetune on the video-related task. Here,
we demonstrate the effectiveness of our PViT approach as
compared to this standard pretraining approach. To implement
pretraining, we add prediction heads on top of MViTv2, and
train them only on the synthetic datasets. Next, we remove these
prediction heads and finetune the model by predicting using
the CLS token. This approach achieved 61.9% compared to
63.3% for MViTv2 baseline and 65.5% for our PViT approach.
This indicates that our PViT approach utilizes task information
more effectively than a standard pretraining approach.
Number of task prompts. This ablation tests whether adding
more prompts per task will improve the results compared to
PViT, which uses one prompt per task. We add a total of 20
prompts to each task, which results in 65.4%, demonstrating
that the addition of more prompts does not necessarily improve
its performance. Clearly, there are many possible design
choices, such as selecting a number of prompts per task, their
dimension, integrating into different depths, etc., and we leave
those to future work.
Dataset-Task Agreement. In Figure 4, we aim to explore how
a different synthetic task combination helps real datasets. Since
there are multiple possible subsets, we simplify and focus on
only two subsets: S1 ={Boxes, Segmentation, Depth} and S2

={Poses, Normal, Segmentation}. The former relates to hand-
object interaction (HOI), and the latter to human action (HA).
The figure shows the accuracy for real datasets when trained
on either S1, S2, or all five tasks. This confirms our original



(a) Something–Something V2

Model Pretrain Top-1 Top-5

SlowFast [7], R101 K400 63.1 87.6
MViTv1 [6] K400 64.7 89.2
ViViT-L [1] IN+K400 65.4 89.8
UniFormer-S [20] IN+K600 67.9 92.1
ORViT Mformer [11] K400 67.9 90.5
VideoMAE (ViT-S) K400 66.8 90.3
MViTv2 [22] K400 68.2 91.4

MViTv2 MT K400 68.4 91.3
MViTv2 VPT K400 61.5 87.5

PViT (Ours) K400 69.6 (+1.2) 91.6 (+0.2)

(b) Diving48

Model Pretrain Frames Top-1

SlowFast [7], R101 K400 16 77.6

TimeSformer [3] IN 16 74.9

TimeSformer-L [3] IN 96 81.0

SViT [2] K400 16 79.8

MViTv2 [22] K400 16 73.1

MViTv2 MT K400 16 75.6

MViTv2 VPT K400 16 69.8

PViT (Ours) K400 16 85.8 (+6.0)

(c) AVA-V2.2

Model Pretrain mAP

SlowFast [7], R50 K400 22.7
SlowFast [7], R101 K400 23.8
ORViT MViT-B [11] K400 26.6
VideoMAE (ViT-S) [31] K400 22.5
VideoMAE (ViT-B) [31] K400 26.7
MViTv1 [6] K400 25.5
MViTv2 [22] K400 26.8

MViTv2 MT K400 27.2
MViTv2 VPT K400 19.0

PViT (Ours) K400 28.4 (+1.6)

(d) SomethingElse

Model
Compositional Base Few-Shot
Top-1 Top-5 Top-1 Top-5 5-Shot 10-Shot

I3D [4] 42.8 71.3 73.6 92.2 21.8 26.7
SlowFast [7] 45.2 73.4 76.1 93.4 22.4 29.2
TimeSformer [3] 44.2 76.8 79.5 95.6 24.6 33.8
STIN [27] 48.2 72.6 - - - -
TSM [23] 52.3 78.0 - - - -
Mformer [28] 60.2 85.8 82.8 96.2 28.9 33.8
SAFCAR [17] 60.7 84.2 - - - -
MViTv2 [22] 63.3 87.5 83.7 96.8 32.7 40.2

MViTv2 MT 62.7 87.6 81.4 96.2 34.0 40.9
MViTv2 VPT 53.0 81.8 76.8 94.8 31.8 39.0

PViT (Ours) 65.5 89.0 85.0 97.4 34.3 41.3
(+2.2) (+2.5) (+1.3) (+0.6) (+1.6) (+1.1)

(e) Ego4D

Model
Temporal PNR

Localization Error Classification Top-1

Bi-LSTM 0.790 65.3
BMN [25] 0.780 -
I3D ResNet-50 [4] 0.739 68.7
EgoVLP (TimeSformer) [24] 0.666 73.9
Video Swin Transformer [26] 0.660 69.5
MViTv2 [22] 0.702 71.6

MViTv2 MT 0.640 73.6
MViTv2 OP 0.652 73.7

PViT (Ours) 0.637 (-0.065) 74.8 (+3.2)

Table 5. Results on SSv2, Diving48, AVA-V2.2, SomethingElse, and Ego4D datasets. We report top-1 and top-5 accuracy on SSv2 and
SomethingElse. On AVA, we report the mAP metric. On Diving48, we report top-1. On Ego4D we report classification error. IN refers to
ImageNet-21K.

hypothesis from the main paper that the datasets are roughly
clustered into two categories: (i) SomthingElse and Ego4D
benefit more from the HOI set. These datasets indeed usually
contain hands interacting with objects, often in first person and
with a low field of view. (ii) AVA and Diving48 belong benefit
more from the HA group. These datasets generally consist of
zoomed-out frames with mostly full human bodies.

Contribution from Datasets and Tasks. In order to quantify
the impact of each dataset and task, we conducted a comprehen-
sive analysis in Table 6. At the top of the table we display the
contribution of each synthetic dataset to the downstream task,
and at the bottom we display the contribution of each synthetic
task (namely, we use all existing annotations from across all
of our synthetic datasets). We observe that EHOI achieves the
highest gains. This is similar to our observation in the main
paper that hand-object interaction videos (HOI) benefit more
from bounding box supervision. For more details, see the
Dataset-Task Agreement ablation (Figure 4d) in the main paper.
In the bottom portion of the table, we examined in the auxiliary
tasks contribute to performance individually, as well as the most
effective combinations of auxiliary tasks. As can be seen, we

find that performing PViT on auxiliary tasks individually does
improve performance (see also Dataset Task Agreement below).
However, using all tasks (last line) improves more than any
individual task, and is also close to the optimal combination.
This reinforces our strategy of simply training on all tasks. For
a visualization of the datasets, see Section B in supplementary.

B. Qualitative Visualizations
Figure 5 and Figure 3 in the main paper show visualizations

of “task prompts” predictions on examples of real videos
from SSv2, Diving48, Ego4D, and AVA. It can be seen that
predictions are reasonable, despite the model not being trained
on these labels for the real videos. For better illustration, we
show in Figure 6 the different auxiliary synthetic datasets we
used in the main paper, as described in Section 4.1 and further
elaborated upon in Section D.1.

C. Additional Implementation Details
Our PViT model can be used on top of the most common

video transformers (MViT [6], TimeSformer [3], Mformer [28],



Dataset Depth Segm. Normal 3D 2D Top-1 Top-5Poses Boxes

- 7 7 7 7 7 63.3 87.5

PHAV 3 3 7 7 7 64.2 87.6
SUR 3 7 7 3 7 63.9 88.4
ES 7 7 7 3 7 63.9 88.1
HS 3 7 3 7 7 64.1 87.4
EHOI 7 3 7 7 3 65.0 88.5

PHAV+HS+SURR 3 7 7 7 7 64.8 88.7
SUR+EHOI 7 3 7 7 7 65.0 88.7
HS 7 7 3 7 7 63.9 88.2
SUR+ES 7 7 7 3 7 64.1 88.4
EHOI 7 7 7 7 3 64.7 88.6

best combination 3 3 7 7 3 65.5 89.0

All 3 3 3 3 3 65.1 88.8

Table 6. Compositional Action Recognition task on the Somethin-
gElse dataset. The contribution of every synthetic auxiliary dataset
(top) and task (bottom).

Video Swin [26]). For our experiments, we choose the
MViTv2 [22] model because it performs well empirically. These
are all implemented based on the MViTv2 [22] library (avail-
able at https://github.com/facebookresearch/
mvit), and we implement PViT based on this repository.
Furthermore, we set the � parameters (see Equation 9) for
the LDepth, LNormal, LSegm, L3DPose, LBoxes, and LDT

losses, to 0.5, 0.5, 0.1, 3.0, 0.1 and 1 respectively (across all
datasets). We choose these lambda components such that all
loss components have the same scale. We elaborate next on
the additional implementation details for each dataset, including
information about optimization, and training and inference.
Dense Prediction Heads. In order to preserve the spatio-
temporal information in dense prediction tasks, we use patch
tokens in addition to task the tokens. First, we upsample
patch tokens from layers 2, 12, 15 (out of 16) using a 3D
convolution layer, followed by Dropout and concatenation. We
then concatenate them with relevant task tokens and forward
them to an MLP for a final prediction.

C.1. Diving48

Dataset. Diving48 [21] contains 16K training and 3K testing
videos spanning 48 fine-grained diving categories of diving
activities. For all of these datasets, we use standard classification
accuracy as our main performance metric.
Optimization details. We train using 16 frames with sample
rate 4 and batch-size 128 (comprising 64 videos and 64
auxiliary synthetic datasets) on 8 RTX 3090 GPUs. We train
our network for 10 epochs with Adam optimizer [18] with a
momentum of 9e�1 and Gamma 1e�1. Following [22], we
use lr=1.5e�4 with half-period cosine decay.
Training details. We use crops of size 224 for the standard
model and jitter scales between 256 � 320. together with

RandomFlip augmentation. Finally, we sample T frames from
the start and end annotation times, following [33].
Inference details. We take 3 spatial crops per single clip to
form predictions over a single video in testing, as in [3].

C.2. SomethingElse

Dataset. The SomethingElse dataset [27] contains 174 action
categories with 54,919 training and 57,876 validation samples.
The compositional [27] split in this dataset provides disjoint
combinations of a verb (action) and noun (object) in the training
and testing set, defining two disjoint groups of nouns {A,B}
and verbs {1,2}. Given the splits of groups, they combine the
training set as 1A+2B, while the validation set is constructed
by flipping the combination into 1B+2A. In this way, different
combinations of verbs and nouns are divided into training or
testing splits.
Few Shot Compositional Action Recognition. As mentioned
in Section 4.4, we also evaluate on the few-shot compositional
action recognition task in [27]. For this setting, we use 88
base action categories and 86 novel action categories. We train
on the base categories (113K/12K for training/validation) and
fine-tune on few-shot samples from the novel categories (for
5-shot, 430/50K for training/validation; for 10-shot, 860/44K for
training/validation). We use the same training recapie as in C.2.
Optimization details. We train using 16 frames with sample
rate 4 and batch-size 128 (comprising 64 videos and 64
auxiliary synthetic datasets) on 8 RTX 3090 GPUs. We train
our network for 100 epochs with Adam optimizer [18] with
a momentum of 9e�1 and Gamma 1e�1. Following [22], we
use lr=7e�5 with half-period cosine decay.
Regularization details. We use weight decay of 1e�4, and
a dropout [12] of 5e�1 before the final perdition.
Training details. We use standard crop size of 224, and we
jitter scales from 256 to 320.
Inference details. We take 3 spatial crops per single clip to
form predictions over a single video in testing.

C.3. Something-Something v2

Dataset. The SSv2 [27] is a ⇠160K-video dataset contains 174
action categories of common human-object interactions. We
follow the official splits from [8].
Optimization details. For the standard SSv2 [27] dataset, we
train using 16 frames with sample rate 4 and batch-size 128
(comprising 64 videos and 64 auxiliary synthetic datasets) on
8 RTX 3090 GPUs. We train our network for 100 epochs with
Adam optimizer [18] with a momentum of 9e�1 and Gamma
1e�1. Following [22], we use lr = 7e�5 with half-period
cosine decay.
Regularization details. We use weight decay of 1e�4, and
a dropout [12] of 5e�1 before the final classification.
Training details. We use a standard crop size of 224, and we
jitter the scales from 256 to 320 along with RandomFlip.

https://github.com/facebookresearch/mvit
https://github.com/facebookresearch/mvit


Inference details. We take 3 spatial crops per single clip to
form predictions over a single video in testing as in [22].

C.4. Ego4D
Dataset. Ego4D [9] is a new large-scale dataset of more than
3,670 hours of video data, capturing the daily-life scenarios of
more than 900 unique individuals from nine different countries
around the world. The videos contain audio, 3D meshes of the
environment, eye gaze, stereo and/or synchronized videos from
multiple egocentric cameras.
Metrics. In the Object State Change Temporal Localization
task, the absolute error (in seconds) is used for evaluation. In
the Object State Change Classification task, the top-1 accuracy
is used for evaluation, following [9] protocol.
Optimization details. We train using 16 frames with sample
rate 4 and batch-size 128 (comprising 64 videos and 64 auxiliary
synthetic datasets) on 8 RTX 3090 GPUs. We train our network
for 10 epochs with Adam optimizer [18] with a momentum of
9e�1 and Gamma 1e�1. Following [22], we use lr=1.5e�5
with half-period cosine decay. Additionally, we used Automatic
Mixed Precision, which is implemented by PyTorch.
Training details. We use a standard crop size of 224, and we
jitter the scales from 256 to 320.
Inference details. We follow the official evaluation,
both for the state change temporal localization and the
state change classification tasks, available at https:

//github.com/EGO4D/hands-and-objects.

C.5. AVA-2.2
Dataset. AVA-2.2 (Atomic Visual Action) dataset [10] contains
bounding box annotations for spatio-temporal localization
of human actions. There are 211K training videos and 57K
validation videos in the dataset. We report mean Average
Precision (mAP) on 60 classes [10] on AVA v2.2 according to
the standard evaluation protocol.
Architecture. SlowFast [7] and MViTv2 [22] use a detection
architecture with a RoI Align head on top of the spatio-temporal
features. We follow their implementation to allow a direct
comparison, elaborating on the RoI Align head proposed in
SlowFast [7]. First, we extract the feature maps from our PViT
model by using the RoIAlign layer. Next, we take the 2D
proposal at a frame into a 3D RoI by replicating it along the
temporal axis, followed by a temporal global average pooling.
Then, we max-pooled the RoI features and fed them to an MLP
classifier for prediction.
Optimization details. To allow a direct comparison, we used
the same configuration as in MViTv2 [22]. We trained 16
frames with sample rate 4, depth of 16 layers and batch-size 32
(comprising 16 videos and 16 auxiliary synthetic datasets) on 8
RTX 3090 GPUs. We train our network for 30 epochs with an
SGD optimizer. We use lr=0.03 with a weight decay of 1e�8
together with early-stopping and a half-period cosine schedule
of learning rate decaying.

Dataset Available #Training Real/Synt.Annots. Samples (⇥103)

PHAV D+S 39.9 Synt.
SURREACT D+S+P3D 108.3 Synt.
ElderSim P3D 48.8 Synt.
HyperSim N+D 31.1 Synt.
EHOI B+S 20.0 Synt.

SomethingElse - 54.91 Real
SSv2 - 157.4 Real
AVA-2.2 - 193.3 Real
Ego4D - 41.1 Real
Diving48 - 15.0 Real

Table 7. Real and synthetic dataset details. We show (a) Top: the
auxiliary synthetic datasets, and (b) Bottom: downstream real datasets.
The available annotations are depth maps (D), segmentation (S), 3D
poses (P3D), normal maps (N) and boxes (B).

Training details. We use a standard crop size of 224 and we
jitter the scales from 256 to 320. We use the same ground-truth
boxes and proposals that overlap with ground-truth boxes by
IoU>0.9 as in [7].
Inference details. We perform inference on a single clip with
16 frames. For each sample, the evaluation frame is centered
in frame 8. We take 1 spatial crop of 224 with 10 different
randomly sampled clips to aggregate predictions over a single
video in testing.

D. Additional Synthetic Datasets Details
Here we provide additional information about the “auxiliary

synthetic datasets” (Section D.1), as well as the licenses and
privacy policies for these datasets (Section D.2). Figure 6
shows examples of the synthetic videos we used to train on,
while Table 7 presents the size of training samples across all
synthetic and real datasets.

D.1. Auxiliary Synthetic Datasets
Synthetic datasets. There has been recent interest in learning
video understanding from synthetic data, including several
popular synthetic datasets that have been proposed to improve
video understanding. More specifically, a novel approach
to data generation has been proposed by SURREACT [32]
and UESTC [15] for synthesizing humans for actions. KIST
SynADL [13] is a large-scale synthetic dataset of elders’
activities generated by the ElderSim engine [14]. The PHAV [5]
dataset is a human action dataset that relies on the procedural
generation of modern game engines. NTU RGB+D [30] and
UESTC RGB-D [15] are large-scale synthetic datasets that was
proposed in order to allow the training of large video models
for video understanding. HyperSim [29] is a photo-realistic
synthetic dataset for holistic indoor scene understanding.

https://github.com/EGO4D/hands-and-objects
https://github.com/EGO4D/hands-and-objects


Egocentric Human-Object Interactions (EHOI) [19] explores
hand-object interaction in an industrial environment involving
different objects, e.g. power supply, electrical panels, sockets,
and more. In spite of the fact that these datasets contain
different dataset styles, our approach is able to enhance video
understanding models by utilizing synthetic data from various
sources with multiple types of scene annotations. Next, we
provide more details for each dataset separately.
SURREACT [32]. The SURREACT dataset, which stands for
Synthetic hUmans foR REal ACTions, renders video sequences
from 3D skeleton joints by using a Skinned Multi-Person Linear
Model (SMPL). The ground truth joints are extracted either by
Kinect v2, or HMML [16]. SURREACT consists of (1) NTU
RGB+D, which is a large-scale dataset for RGB-D human ac-
tion recognition. It consists of 56,880 samples of 60 action
classes collected from 40 subjects. The actions are generally
categorized into three categories: 40 daily actions (e.g., drink-
ing, eating, reading), nine health-related actions (e.g., sneezing,
staggering, falling down), and 11 mutual actions (e.g., punching,
kicking, hugging). These actions take place under 17 differ-
ent scene conditions corresponding to 17 video sequences (i.e.,
S001–S017). The actions were captured using three cameras
with different horizontal imaging viewpoints, namely, �45�,0�,
and +45� degrees. Last, multi-modality information is provided
for action characterization, including depth maps, 3D skeleton
joint position, RGB frames, and infrared sequences; and (2)
UESTC RGB-D, which contains 40 categories of aerobic exer-
cise. The authors utilized two KinectV2 cameras in 8 fixed direc-
tions and 1 round direction to capture these actions with the data
modalities of RGB video, 3D skeleton and depth map sequences.
HyperSim [29]. The HyperSim dataset is a high-resolution
dataset consisting of 77,400 images from 461 indoor scenes
with detailed per-pixel labels and corresponding ground truth
geometry. It contains material and lighting information for
every scene as well as dense per-pixel semantic instance
segmentation, as well as complete camera information for
every image. HyperSim was originally designed to handle the
challenging per-pixel annotation of real data.
KIST SynADL [13]. KIST SynADL is a synthetic dataset
that focuses on elders’ daily activities, which differ from other
natural actions due to their high degree of variety. The activities
of elders, such as sitting down or washing face, are more
consistent psychically, shorter, and often rely on body position.
Last, the dataset is generated using ElderSim [14], a synthetic
action simulation platform aimed at generating synthetic data
on elders’ daily activities. Throughout the paper, we refer to
ElderSim as KIST SynADL.
Procedural Human Action Videos (PHAV). The PHAV
dataset is a diverse, realistic, and physically plausible dataset of
human action videos. It contains a total of 39,982 videos, with
more than 1,000 examples of each action in 35 categories across
7 different environments and 4 types of weather. The data is
generated based on the existing motion-based real database

CMU MOCAP database, for basic human animations. One of
its key components is the use of Ragdoll physics to animate
a human model while respecting basic physics properties such
as connected joint limits, angular limits, weight, and strength.
The videos are generated at 30fps and a resolution of 340x256.
Egocentric Human-Object Interactions (EHOI) [19]. EHOI
is a synthetic image dataset that explores hand-object interaction
in an industrial environment involving different objects, such
as a power supply, electrical panels, sockets, etc. To create 3D
models, several 3D scanners are applied, then using Blender,
the authors generate the following: (1) photo-realistic RGB
images; (2) depth maps; (3) semantic segmentation masks,
objects, and hand-bounding boxes with contact states; and
(4) distance between hands and objects in 3D space. The
generated synthetic dataset contains a total of 20,000 images,
29,034 hands (of which 14,589 are involved in an interaction),
123,827 object instances (14,589 of which are active objects),
and 19 object categories including portable industrial tools (e.g.,
screwdrivers, electrical boards) and instruments.

D.2. Licenses and Privacy
The license, PII, and consent details of each dataset are in

the respective papers. In addition, we wish to emphasize that
the datasets we use do not contain any harmful or offensive
content, as many other papers in the field also use them. Thus,
we do not anticipate a specific negative impact, but, as with any
Machine Learning method, we recommend to exercise caution.
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Figure 5. Qualitative visualization of the “Task Prompts”. Visualization of the output of the “task prompts” prediction heads on frames from
the SSv2, Diving48, Ego4D, and AVA datasets. The model was trained on the SomethingElse dataset for action recognition. The predictions are
the head outputs, Hi, for depth, normal, part-semantic segmentation and hand-object 2D boxes. It can be observed that the task prompts produce
meaningful maps, despite not receiving labels for the real videos.
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Figure 6. Synthetic Datasets Visualization. Our training datasets for PViT consist of several synthetic datasets that each emphasize different topics,
including multi-views, static objects, hand-object interaction, and human motion activities.
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