LidarCLIP or: How I Learned to Talk to Point Clouds
Supplementary Material

A. Model details

Tab. 1 shows the hyperparameters for the SST encoder
[2] used for embedding point clouds in the CLIP space.
Window shape refers to the number of voxels in each win-
dow. Other hyperparameters are used as is from the original
implementation.

The encoded voxel features from SST are further pooled
with a multi-head self-attention layer to extract a single fea-
ture vector. Specifically, the CLIP embedding is initialized
as the mean of all features and then attends to said features.
The pooling uses 8 attention heads, learned positional em-
beddings, and a feature dimension that matches the current
CLIP model, meaning 768 for ViT-L/14 and 512 for ViT-
B/32.

B. Training details

All LidarCLIP models are trained on the union of the
train and raw_large splits, which are defined in the ONCE
development kit [8]. The ViT-L/14 version is trained for 3
epochs, while ablations with ViT-B/32 used only 1 epoch
for training. We use the Adam optimizer [7] with a base
learning rate of 10~°. The learning rate follows a one-cycle
learning rate scheduler with a maximum learning rate of
103 and cosine annealing, and spends the first 10% of the
training increasing the learning rate. The training was per-
formed on four NVIDIA A100s with a batch size of 128,
requiring about 27 hours for 3 epochs.

Parameter Value Unit
Voxel size (0.5,0.5,6) m
Window shape (12,12, 1) -

Point cloud range 0, -20,-2,40,20,4) m
No. encoder layers 4 -
d model 128 -
d feedforward 256 -

Table 1. Hyperparameters for SST encoder.

C. Baseline details
C.1. PointCLIP

PointCLIP [ 1 1] transfers CLIP’s knowledge to 3D by ap-
plying the pre-trained CLIP image encoder to renderings
of point clouds from multiple viewpoints and pooling the
feature vectors. Hence, for zero-shot classification and re-
trieval, PointCLIP does not require any training. We adopt
the official PointCLIP implementation' for rendering lidar
point clouds to 2D depth maps and extracting features. For
zero-shot classification, we follow PointCLIP and render
objects from six different viewpoints and employ a “point
cloud depth map of a [CLASS].” prompting scheme. We
also evaluated the prompt ensembling used by LidarCLIP
but found it to perform worse. For retrieval, we evaluate us-
ing six viewpoints and using only the front-facing one, but
find them to perform comparably. For consistency, we use
all six viewpoints.

C.2. CLIP2Point

CLIP2Point [5] uses a similar approach to PointCLIP,
but applies a different rendering scheme, giving big perfor-
mance improvements for zero-shot classification on real-
world data such as ScanObjectNN. Further, opposite to
PointCLIP, they propose to pre-train the CLIP image en-
coder on depth maps to get further improvements. Specifi-
cally, from ShapeNet, they create training samples consist-
ing of one image and two depth maps at different distances.
Images are passed through a frozen CLIP image encoder
while the depth maps are passed through a CLIP image en-
coder that does not have frozen weights. The depth encoder
is supervised using the NT-Xent loss from SimCLR [!1],
applied both between the two depth map samples (intra-
modality) and between the averaged depth map features and
the image features (inter-modality). For complete details,
we refer to the original manuscript.

As CLIP2Point shares some similarities to our approach,
we also apply their pre-training on ONCE data for a fair
comparison. We train two versions, one ViT-B/32 (used
in the original manuscript) and one ViT-L/14 (used for
supervising LidarCLIP). Similar to the results in [1 1] we

Mttps://github.com/ZrrSkywalker/PointCLIP
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find ViT-B/32 to perform best and hence report those re-
sults in the main manuscript. We use the same optimizer
settings, learning rate and batch size as in the original
manuscript. We train CLIP2Point on the same image-point
cloud pairs as LidarCLIP and render two depth maps using
the CLIP2Point rendering approach. For zero-shot classifi-
cation, we render the objects from six viewpoints, while we
find rendering only the front-view beneficial for retrieval.

C.3. Generative applications

We evaluate our generative applications, i.e., lidar-to-text
and lidar-to-image, using roughly 6,000 randomly selected
image-lidar pairs from the ONCE validation set. For the
lidar-to-image generation, we use CLIP-guided Stable Dif-
fusion” [10]. We set the number of inference steps to 250,
guidance scale to 0.05, CLIP guidance scale to 1200, num-
ber of cutouts to 12. All other parameters are used as is. To
ensure photorealistic results (in contrast to art or drawings)
we add the prompt “a photorealistic image” when running
lidar-to-image generation without captions.

For lidar-to-text we adopt the inference notebook pro-
vided by ClipCap® [9]. We use the COCO pre-trained model
without beam search.

As our lidar-to-image baseline, we use the official
pix2pix [6] PyTorch implementation*. We train a pix2pix
model on 30,000 randomly selected image-lidar pairs from
the ONCE train and large raw set. We also randomly select
about 6,000 image-lidar pairs for validation during train-
ing. Note that these are different from the 6,000 pairs used
for evaluation. We create depth images by projecting lidar
points in to the image and setting pixel values to normalized
depth. Pix2pix hyperparameters set to default values® and
the training is run for 50 epochs with a batch size of 64.

D. Additional results
D.1. Zero-shot object classification

In Tab. 2 we evaluate additional backbones on the zero-
shot classification task. We have included results from the
main manuscript (Sec. 4.1.) for convenience. Similarly
to the results of [11], ViT-B/32 performs best and is thus
the backbone we report on in the main manuscript. We
note that pre-training CLIP2Point [5] on ONCE does not
improve performance for ViT-B/32. Although it improves
ViT-L / 14, we note that the baseline performs worse than

2https://github.com/huggingface/diffusers/tree/
main/examples/community

3https://github.com/rmokady/CLIP_prefix_caption

4https://github.com/ junyanz /pytorch-CycleGAN-
and-pix2pix

Shttps : / / github . com / Junyanz /
pytorch - CycleGAN - and - pix2pix / blob /
9f8f61e5a375¢c2e01¢c5187d093¢ce9c2409£409b0/scripts/
train_pix2pix.sh#L2

Backbone Fine-tuned Cls. Ob;j.
PointCLIP [11] ViT-B/32 - 29.1%  25.0%
PointCLIP [11] ViT-L/14 - 18.1%  3.14%
PointCLIP [11] RN50 - 28.2%  34.1%
PointCLIP [11] RN101 - 22.2%  22.8%
CLIP2Point [5] ViT-B/32 - 31.1%  26.2%
CLIP2Point [5] ViT-L/14 - 16.0%  8.2%
CLIP2Point [5] RN50 - 22.6%  28.3%
CLIP2Point [5] RN101 16.9% 17.5%

ShapeNet  29.8%  28.2%

CLIP2Point [5]  ViT-B/32

CLIP2Point[5]  ViT-B/32 ONCE 21.4%  3.2%
CLIP2Point[5]  ViT-L/l4 ONCE 32.2% 13.9%
Image ViTL/14 - 58.6% 67.1%
LidarCLIP (ours) ViT-L/14 ONCE 43.6% 62.1%

Joint (ours) ViT-L/14  (see above) 60.8% 73.3%

Table 2. Zero-shot classification on ONCE val, top-1 accuracy
averaged over classes/object instances.

random guessing. We believe the pre-training to not be ben-
eficial for zero-shot classification as the training data differ
greatly from the inference setup. During training, the scenes
cover large areas and vary in crowdedness. At inference,
the model instead ‘zooms in’ on a single object. In contrast,
pre-training with the synthetic ShapeNet data does not hurt
performance, as it is object-centric.

D.2. Retrieval

Here, we provide detailed retrieval results, as the main
manuscript only contained averaged numbers. In Tab. 3,
we show class-wise performance when querying specifi-
cally for objects close to the ego-vehicle. We find that lidar
retrieval outperforms image retrieval for most classes, espe-
cially on Cyclists. Tab. 4, shows class-wise performance for
objects in general. As described in the main manuscript, we
hypothesize some classes to be more invariant than others in
3D than 2D. For instance, LidarCLIP sometimes confuses
buses to be trucks, resulting in lower truck retrieval score.
In Tab. 5, we show retrieval results for different scene con-
ditions. As expected, LidarCLIP does not perform on par
with the image encoder for these types of retrieval, but sur-
prisingly still contains enough complementary information
for the joint model to achieve the strongest performance.
Separate prompts. Fig. 1 shows additional results for the
joint retrieval with separate prompts for the image and li-
dar encoder. Again, these scenes are close to impossible to
retrieve using a single modality.

Prompt examples. We provide several examples of
prompt templates in Tab. 6. The quality modi-
fiers are bad, good, clean, dirty, cropped,
close-up. The format modifiers are photo. The
scene modifiers are environment, scene, road,
street, intersection. The capture modifiers are
taken, captured. For object classification we follow
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P@K \ 10 100 10 100 10 100 10 100 10 100 \ 10 100
Object Cat. ‘ Nearby Car Nearby Truck Nearby Bus Nearby Ped. Nearby Cyclist ‘ Avg. Nearby
PointCLIP 02 034 00 003 0.0 0.0 0.1 0.02 0.0 0.07 0.06 0.09
CLIP2Point | 0.2 0.17 0.0 0.01 02 0.06 00 001 0.0 0.01 0.08 0.05
CLIP2Point" | 0.8 0.66 0.0 0.04 01 026 05 024 04 0.36 036 0.31
Image 1.0 095 0.7 0.83 06 055 1.0 0.66 0.5 0.37 0.76 0.67
LidarCLIP 1.0 098 08 0.70 1.0 090 0.7 0.71 0.9 0.61 0.88 0.78
Joint 09 098 0.8 0.92 1.0 079 1.0 0.84 0.8 0.3 090 0.81

Table 3. Retrieval for various object categories, requiring the object to be close to the ego vehicle. We report precision at ranks 10 and 100.

TONCE fine-tuning.

P@K |10 100 10 100 10 100 10 100 10 100 | 10 100
Object Cat. ‘ Car Truck Bus Pedestrian Cyclist ‘ Avg.

PointCLIP 06 066 0.1 013 00 003 04 035 04 029]|03 029
CLIP2Point | 0.6 0.60 0.1 0.11 0.1 0.12 0.1 020 03 0.19 | 024 0.24
CLIP2Point" | 1.0 0.84 0.0 0.16 06 064 09 069 04 0.65|0.58 0.60
Image 1.0 096 09 094 09 094 09 083 05 037|084 0.81
LidarCLIP 1.0 099 08 074 1.0 097 08 0.82 1.0 058|092 0.82
Joint 09 097 1.0 092 1.0 097 1.0 090 09 042|096 0.84

Table 4. Retrieval for various object categories. We report precision at ranks 10 and 100. Notice the joint classification is superior overall,
but there are two categories (bus and cycle), where using only lidar is advantageous. TONCE fine-tuning.

the prompts proposed by Gu et al. [4], only inserting our au-
tomotive class names. We refer to the code for full prompt-
ing details®.

Figure 1. Example of retrieval using separate prompts for im-
age and lidar. We query for images with blur, water spray, glare,
corruption, and lack of objects, and for point clouds with nearby
trucks, pedestrians, cars, etc. By combining the scores of these
separate queries, we can find edge cases that are extremely valu-
able during the training/validation of a camera-based perception
system. These valuable objects are highlighted in red, both in the
image and point cloud.

Shttps://github.com/atonderski/lidarclip/blob/
main/lidarclip/prompts.py

D.3. Zero-shot scene classification

Here, we provide additional examples of zero-shot clas-
sification using LidarCLIP. However, rather than object-
level classification, we do zero-shot classification on entire
scenes. We compare the performance of image-only, lidar-
only, and the joint approach.

Fig. 2 shows a diverse set of samples from the valida-
tion and test set. In many cases, LidarCLIP and image-
based CLIP give similar results, highlighting the transfer of
knowledge to the lidar domain. In some cases, however, the
two models give contradictory classifications. For instance,
LidarCLIP misclassifies the cyclist as a pedestrian, poten-
tially due to the upright position and fewer points for the
bike than the person. While their disagreement influences
the joint method, “cyclist” remains the dominating class.

Another interesting example is the image of the dog.
None of the models manage to confidently classify the pres-
ence of an animal in the scene. This also highlights a short-
coming with our approach, where the image encoder’s ca-
pacity may limit what the lidar encoder can learn. This
can be circumvented to some extent by using even larger
datasets, but a more effective approach could be local super-
vision. For instance, using CLIP features on a patch level
to supervise frustums of voxel features, thus improving the
understanding of fine-grained details.

In Fig. 3 we highlight the importance, and problem,
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P@K ‘ 10 100 10 100 10 100 10 100 10 100 10 100 ‘ 10 100
Scene Cat. |  Night Day Sunny Rainy Busy Empty |  Avg.

PointCLIP 03 029 03 073 06 054 02 053 05 032 02 036|035 046
CLIP2Point | 0.2 0.19 0.8 0.78 04 059 05 036 04 028 07 051|050 045
CLIP2Point! | 1.0 0.75 0.7 077 05 049 10 1.00 09 075 07 052|080 0.71
Image 1.0 1.00 09 092 10 100 1.0 1.00 1.0 091 08 073|095 0.93
LidarCLIP 02 053 10 098 05 074 08 098 1.0 093 0.5 0.69 | 0.67 0.81
Joint 1.0 1.00 1.0 099 10 100 1.0 1.00 1.0 099 08 0.79 | 097 0.96

Table 5. Retrieval of scenes with various global conditions. We report precision at ranks 10 and 100. Notice that the joint classification is

superior for all types of conditions. TONCE fine-tuning.

Retrieval category | Values Prompt example

time of day night/day a {quality} {format} of a {scene} {capture} at {value}
weather sunny/rainy a {quality} {format} {capture} in a {value} {scene}

busy - a {quality} {format} of extremely busy traffic during rush hour
empty - a {quality} {format} of a completely empty {scene}

object car/pedestrian/... | there is a {value} in the scene

Table 6. Examples of the prompt templates used for various retrieval categories. Note that multiple prompt templates were used for each

category to decrease the impact of the exact choice of prompt.

of including reasonable classes for zero-shot classification.
The example scene contains a three-wheeler driving down
the street. For the left sub-figure, none of the text prompts
contains the word three-wheeler. Consequently, the model
is confused between car, truck, cyclist, and pedestrian as
none of these are perfect for describing the scene. When
including “three-wheeler” as a separate class in the right
sub-figure, the model accurately classifies the main subject
of the image. To avoid such issues, we would like to cre-
ate a class for unclassified or unknown objects, such that
the model can express that none of the provided prompts is
a good fit. Optimally, the model should be able to express
what this class is, either by providing a caption or retriev-
ing similar scenes, which can guide a human in naming and
including additional classes. We hope that future work, po-
tentially inspired by open-set recognition [3], can study this
more closely.

D.4. LidarCLIP for lidar sensing capabilities

In Fig. 4, we show additional examples of retrieved
scenes for various colors. Note that images are only shown
for reference and that LidarCLIP only observes the point
cloud. Similar to results in Sec. 4.2, LidarCLIP has no un-
derstanding of distinct colors but can discriminate between
dark and bright. For instance, “a gray car” returns dark grey
cars, while none of the cars for “a yellow car” are yellow.

D.5. Lidar to image and text

We provide additional examples of generative applica-
tions of LidarCLIP in Fig. 6. These are randomly picked

scenes with no tuning of the generative process. The latter
is especially important for images, where small changes in
guidance scale’ and number of diffusion steps have a mas-
sive impact on the quality of the generated images. Fur-
thermore, to isolate the impact of our lidar embedding, we
use the same parameters and random seeds for the different
scenes. This leads to similar large-scale structures for im-
ages with the same seed, which is especially apparent in the
rightmost column.

In most of these cases, the generated scene captures at
least some key aspect of the embedded scene. In the first
row, all generated scenes show an empty road with many
road paintings. There is also a tendency to generate red
lights. Interestingly, several images show localized blurry
artifacts, similar to the raindrops in the source image. The
second row shows very little similarity with the embedded
scene, only picking up on minor details like umbrellas and
dividers. In the third row, the focus is clearly on the bus,
which is present in the caption and three out of four gener-
ated images. In the fourth row, the storefronts are the main
subject, but the generated images do not contain any cars,
unlike the caption. In the final scene, we see that the model
picks up the highway arch in three out of the four generated
images, but the caption hallucinates a red stoplight, which
is not present in the source.

"The guidance scale is a parameter controlling how much the image
generation should be guided by CLIP, which may stand in contrast to pho-
torealism.
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Figure 2. Qualitative zero-shot classification on the ONCE validation/test set.



Figure 3. Example of zero-shot classification that demonstrates the importance of picking good class prompts. When excluding the most
appropriate class, “three-wheeler”, the model is highly confused between the remaining classes.

“a blue car”

“a green car”

“a gray car”

“a yellow car”

Figure 4. Top-5 retrieved examples from LidarCLIP for different colors. Note that we show images only for visualization, point clouds
were used for retrieval.



“a bus”

“a nearby car”

“a distant car”

“a person”

“a person crossing the road”

“trees and bushes”

Figure 5. Top-5 retrieved examples when transferring LidarCLIP to nuScenes. LidarCLIP generalizes decently for distinct, large, objects,
and even maintains some concept of distances. However, smaller objects and less uniform objects, like pedestrians and vegetation, do not
transfer well.



Generated caption: A city street with traffic lights and street signs.

Generated caption: A street with a row of parked motorcycles and a yellow fire hydrant.

Generated caption: A bus is driving down the street with a man standing on the sidewalk.

Generated caption: A street with a lot of cars and a building.

Generated caption: A view of a highway with a red stoplight.

Figure 6. Example of generative application of LidarCLIP. A point cloud is embedded into the clip space (left, image only for reference)
and used to generate text (top) and images (right). All four images are only generated with guidance from the lidar embedding, the caption
was not used for guidance.
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