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1. Dataset Collection
1.1. Consent

Capturing and publishing human data should be carried
out with care. Following the Computer Vision Foundation
ethics guidelines [4], all the shared data has been consented
to, explicitly, in writing. Some individuals agreed to be cap-
tured but only for internal use, therefore some sequences
used to compute our results are not shared publicly with N-
SpectralFace.

1.2. Hardware setup

For both N-SpectralFace and Real-SpectralFace, the data
has been captured with two cameras and a beamsplitter. We
share these optical setups in fig. 1. In order to capture both
datasets, we connect the cameras to a single laptop that runs
the recording scripts. The beamsplitter is essential to arti-
ficially increase the number of multispectral bands we cap-
ture at once. For N-Spectral face, we use:

* A multispectral CMS-C camera from Silios Technolo-
gies [13]. It captures data over 9 bands: 8 bands in the
visible (430nm to 700nm) and 1 grayscale (panchro-
matic) band over all the visible spectrum (c.f. fig. 2).
In good lighting conditions, it records at a framerate of
60fps.

* A Basler dart grayscale camera (reference: daA1920-
160um) with a long-pass infrared (IR) filter mounted
in front. In good lighting conditions, it can record up
to 164fps.

For Real-SpectralFace, we use two identical DAVIS328 [2]
event cameras, but vary the light filter in front. In fig 1b, the
left event camera has an IR cut, a filter that only lets visi-
ble light through, and the right event camera has the same
IR long-pass as used in N-SpectralFace (cut-off 850nm).
Without a beamsplitter, it would not have been possible to
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capture multispectral events for Real-SpectralFace that cap-
ture the exact same scene. In a stereo camera setup, the
spectral bands would have a slightly offset viewpoint. The
processing of the data is detailed in section 2.

1.3. N-SpectralFace dataset composition

For the dataset, our goal is to feature multiple people,
in different places with different lighting conditions. The
lighting is an important parameter as it directly relates to
the amount of infrared light one has in the scene. We distin-
guish between three possibilities:

* Outdoor sequences. Thanks to sunlight, there is a large
amount of infrared light (c.f. fig. 12).

¢ Indoor sequences in a bright room. Thanks to the glass
walls, enough sunlight enters the room and the scene
has enough infrared light.

e Other indoor sequences. All the indoor lights being
LED, no infrared light is initially present in the scene
(c.f. fig. 12). To alleviate this issue and have meaning-
ful infrared data for these sequences, we use an incan-
descent bulb pointed towards the scene we capture.

N-SpectralFace is diverse but not strictly balanced. The
people and place proportions are respectively reported in
figures 3a and 3b.

(b) Real-SpectralFace

(a) N-SpectralFace

Figure 1. Beamsplitter and camera setups. Each subfigure repre-
sents the setup of a single dataset. In each pair of cameras, the
camera lenses are identical. Best viewed in color.
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Figure 2. Quantum Efficiency of the SILIOS multispectral cam-
era, adapted from [13]. Warning: the colors of the bands do not

correspond to their wavelength. Notice how the grayscale band is
almost equally sensitive for all visible bands. Best viewed in color.
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(a) People. Each letter is a different person.
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(b) Recording places (and associated lighting).

Figure 3. N-SpectralFace full dataset composition (58 sequences).
Focus on the people and places distribution. Best viewed in color.
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Figure 4. HDFS hierarchical file structure for each sequence. Mul-
tispectral events, conventional images and ground truth are stored
in the same dictionary. Notice how each branch has a ts” leaf for
timestamps, all the data in an HS file is aligned in time (unique
time reference).

2. Preparing the datasets
2.1. Data format

On the one hand, representing an image in the mem-
ory is relatively easy. All the pixel values are stored in a
contiguous array. If the image is multispectral, it is then
saved as a contiguous 3-dimensional tensor, with N chan-
nels. On the other hand, storing event-based data is less
trivial. Indeed, event cameras capture an asynchronous and
continuous stream of events, and each event is a (z,y, t,p)
tuple. Moreover, N-MobiFace, N-YoutubeFaces, and N-
SpectralFace are bimodal datasets, meaning it consists of
conventional frames and event-based data aligned on a sin-
gle timescale. Contiguous arrays are obviously not a good
data structure to store our multispectral events and conven-
tional frames. We choose to use the hierarchical HDFS file
structure, represented in fig. 4. An H5 file can be described
as a dictionary where the terminal nodes (leaves) are our
data. For example, the “deviceO/events” branch has 4 leaves
corresponding to location, polarity and timestamp of each
event. The leaves are stored as lists and all the leaves of
a single branch have the same length (e.g. the number of
frames or the number of events). Multispectral events are
simply represented as N branches, each corresponding to a
single spectral band.



Figure 5. Example samples from Mobiface, adapted from [7]. No-
tice the occlusions, out of plane rotation, illumination variations
and motion blur. Best viewed in color.

Figure 6.
from [14]. Notice that the faces to be detected are less challenging.
Best viewed in color.

Example samples from YoutubeFaces, adapted

2.2. Data cleaning

Some sequences from MobiFace [7] and Youtube-
Faces [14] were not relevant for our work and kept out of
their respective Neuromorphic version. In particular, multi-
ple sequences in YoutubeFaces consist of a still face, e.g.
when the extract is only a voiceover and a picture of a
celebrity. However, in these situations we would end up
with a labeled face but no events at all to detect it, as
static scenes captured by a static camera do not generate
events. Therefore, we did not include these sequences in N-
YoutubeFaces. Also, we do not use the portrait sequences
in N-MobiFace in our training and validation because it
consists of only five sequences out of approx. 3500 to-
tal landscape sequences (both N-datasets combined). Re-
fer to fig. 5 and 6 for some samples of N-MobiFace and
N-YoutubeFaces.

2.3. Data labelling

YoutubeFaces [14] and MobiFace [7] are both labeled
for single face tracking and therefore many face labels are

missing. We present an approach to fix the labels but it
can also be used to label a face dataset from scratch. As
we have access to ground truth labels for some faces, we
opt for reusing this information. For each image in a video
sequence, we run inference for an ensemble of N face de-
tection methods. We save all the outputs and their con-
fidence if it is above a confidence threshold (preferably
high). Naturally, ground truth labels have a confidence of
1.0. Then, we run Non-Maximum Suppression (NMS) with
a low Intersection-over-Union threshold to only keep the
most confident labels in the image and discard duplicates.
After this operation, a new set of pseudo ground truth la-
bels for the image is created. If there was only a single
face in the sample, the original ground truth is automati-
cally kept. If not, it is very likely that at least one of the N
labeling detectors will detect it and it will be labeled. For
N-MobiFace and N-YoutubeFaces, we used two face detec-
tion neural networks (N=2): MTCNN' [16] and Yolov5®
trained on CrowdHuman [I1]. For N-SpectralFace and
Real-SpectralFace, only YolovS5 is used (N=1) to enforce la-
bel consistency. The auto-labeling process steps are shown
in fig. 7. Figure 8 shows that the computed groundtruth la-
bels transfer well to the simulated EVS data.

3. Training details
3.1. Training from scratch?

When training our baseline model on N-MobiFace and
N-YoutubeFaces, we experimented with using the Ima-
geNet [3] pretrained weights for ResNet (included in Py-
Torch) as well as training everything from scratch. The ex-
periments we carried showed us that the ImageNet weights
greatly improve the APS performance but not the EVS per-
formance, compared to training from scratch:

* On the one hand, the APS GS performance (AP@.5)
improved by 9% and APS RGB performance improved
by 20%.

* On the other hand, the EVS GS performance (AP@.5)
improved by 2% only and the EVS RGB performance
improved by 8%

From the numbers, it is clear that the ImageNet weights
greatly favor APS models over EVS. As there exists no
comparable large dataset for EVS images, we train all mod-
els from scratch for a more fair comparison. Reproducing
this experiment on N-YoutubeFaces showed similar results.

These results are not very surprising as ImageNet is a
conventional image-based dataset and nothing guarantees

'Model and weights:
facenet-pytorch

https://github.com/timesler/

Model: https://github.com/ultralytics/yolovs,
Weights: https : / / github . com / deepakcrk / yolov5 -
crowdhuman
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(a) N-Mobiface. Left: Intermediate labels (N detectors), Right: Final labels

Figure 7. Illustration of the pseudo-labeling process, before and after the Non-Maximum Suppression (NMS). Red boxes: MTCNN, Blue
boxes: Yolov5, Yellow boxes: Initial ground truth, Green boxes: Final label after NMS. Best viewed in color.
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Figure 8. Example of final labels in N-YoutubeFaces, in the EVS domain. Notice the bounding boxes around no events: these are not False
Positives but static faces.



that the learned features will be useful for EVS data. In [5],
Geirhos et al. (2018) show that [...]ImageNet-trained
CNNs are strongly biased towards recognising textures
rather than shapes[...]”. However, conventional image-
based data being dense and high resolution, it provides a
lot of information about object textures. On the other hand,
event-based data is sparse and based on intensity changes,
highlighting object edges and therefore object shapes rather
than texture. This could be an explanation to why ImageNet
weights initialization do not benefit EVS models as much
but it would need further experimentation and analysis. For
all the reasons, we chose to train both APS and EVS models
from scratch, for a fair comparison.

3.2. Hyperparameters

To reproduce our results, here are the hyperparameters
used during training and fine-tuning:

e Input image size: [346,346] during training, [256,
393] during fine-tuning.
¢ Event frame representation: Binary image, with

50ms time window. Events are aggregated along their
time dimension, polarity is ignored.

* Optimizer: SGD with 90% momentum or SGD with-
out momentum. For each model, we trained both and
kept the best weights

* Scheduler: Cosine Annealing with Warm Restarts, a
periodic scheduler with increasing period. First restart
after 11 epochs, multiply the period by 2 at every
restart.

¢ Initial learning rate: 0.01 when training from scratch,
0.001 for fine-tuning (slower).

» Batch size: 32 for training, 64 for validation.

* Number of epochs: 300, each epoch is composed of
2000 random samples (conventional frame or 50ms
event-interval).

* Augmentations: Random flipping (left-right), in-
plane rotations and random cropping.

e Pretrained weights: None, not even for the Resnet
blocks, c.f section 3.1. During fine-tuning, we used
the weights trained on grayscale N-MobiFace and N-
YoutubeFaces.

Training is performed on a single GPU with the same
random seed.

4. Physics: Other relevant Spectra
In this section, we report some useful spectra:

* The grayscale DAVIS camera sensitivity in figure 9.

* The color DAVIS camera sensitivity in figure 10.

The SILIOS camera sensitivity in figure 2.
* The Basler camera sensitivity in figure 11.
* Different light emission spectrums in figure 12.

* The skin reflectance spectrum in figure 13.

Note that Camera Sensitivity, Quantum Efficiency (QE),
and Spectral Response Curve are similar concepts, they all
give an idea of the ability a camera has to capture light from
different wavelengths. The difference lies in how this ability
is measured and reported, QE gives the proportion of pho-
tons that is captured for each wavelength, while the Spectral
Response Curve normalizes the contribution of each wave-
length with respect to the peak.

5. Dataset Licenses

Mobiface [7] is licensed for research and non-
commercial use only. All videos in the dataset are protected
by Youtube terms of service [15]. As of today, the dataset
is available upon completion of a form®.

YoutubeFaces [14] also consists of videos downloaded
from YouTube and follow the platform’s terms of ser-
vice [15]. The dataset is publicly shared on their website*

3Link: https://mobiface.github.io/
4Link: https://www.cs.tau.ac.il/-wolf/ytfaces/
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Figure 9. Quantum Efficiency of the DAVIS346 MONO event
camera, adapted from [12]. Notice the sensitivity to wavelengths
in the near-infrared (> 800nm): infrared events can exist.
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Figure 10. Quantum Efficiency of the Color-DAVIS event camera,
adapted from [9]. Notice how all color bands are equally sensitive
to near-infrared (> 800nm). Best viewed in color.
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Figure 11. Spectral Response Curve of the Basler grayscale cam-
era, adapted from [1].
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Figure 12. Emission spectrum for outdoor sunlight, LED and in-
candescent bulb, normalized.
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Figure 13. Skin reflectance spectrum for different types of skin,
adapted from [8]. Notice how all curves end up converging in the
infrared.

6. Qualitative Results

To get a better understanding of face detection on event-
based data, and particularly on multispectral events, we
show some additional examples in this section. Note that
multispectral samples must be false-colored” in RGB for
visualization. In general, we represent the “most blue” band
in Blue (lower wavelength), and the two bands with highest
wavelength in Green and Red. Therefore, if an input con-
tains infrared, it is guaranteed that it will be represented in
red.

Ground truth label is represented in red, and face detec-
tion prediction is in green. Please look at figures 14, 15,
and 16 for N-SpectralFace examples of the Single channel
experiment (Grayscale against Infrared). For multi-channel
examples, figures 17, and 18 show a few examples of APS
and EVS inferences. Increasing the amount of multispec-
tral channels or introducing infrared both seem to reduce
the number of False Positives in the scene, c.f. fig. 17
and 18. Finally, examples on real multispectral events
(Real-SpectralFace) are shown in figures 19 and 20.

7. About Multispectral EVS HW feasibility

Note that, when it comes to multispectral sensing, the
narrower the band is, the less light intensity the sensor will
capture, as we simply truncate part of the Quantum Effi-
ciency curve and therefore the final integral (equation 2) is
mathematically less or equal to the initial integral (equation
1). While low light is an issue for regular cameras, the high
dynamic range and high sensitivity in low light properties of
event cameras make them especially suitable for multispec-
tral imaging. Also, compared to hyperspectral imaging, the
bands are relatively wide and therefore irradiance is reason-
ably high.

Furthermore, we believe that hardware feasibility in
practice would not be a problem. As EVS pixels are larger
than regular APS pixels, it should be possible to apply the
same filters as used in regular cameras pixel-wise. The ex-
isting application of polarization filters on EVS pixels [6] or
RGB Bayer pattern on EVS pixels [9, 10] also suggest that
it would be feasible.



Figure 14. Face detection on three samples (Indoor, with an incandescent bulb). Left is GS data, right is IR. The first row is APS, others
are EVS. The first two rows show a static face, while the third row shows a moving face. Ground truths are in red, predictions in green.
Notice the different event density around the face when there is a movement, vs. when there is none.

Figure 15. Face detection on two samples from N-SpectralFace (Indoor with sunlight). For each group of pictures, the first row is APS GS
and APS IR, and the second row is EVS GS and EVS IR. Ground truths are in red, predictions in green. Notice how the single channel IR
models show more false positives.
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(a) APS samples. Left: GS (good), Right: IR, notice the False Positives. (b) EVS samples. Left: GS, Right: IR

Figure 16. Face detection on outdoor samples (with sunlight), N-SpectralFace. Ground truths are in red, predictions in green.

(a) APS data, outdoor. From left to right: GS, GS+IR, BGR+IR. Notice how the predictions are getting better when more multispectral bands are added
(from left to right).

(b) EVS data, indoor with bulb. From left to right: GS, BGR, BGR+IR.

Figure 17. Face detection on multispectral samples from N-SpectralFace. Ground truths are in red, predictions in green. Notice how the
number of False Positives decreases for EVS models from left to right: multispectral EVS models are clearly more robust, which could
explain the better mAP. Best viewed in color.



BGR BGR+IR

Figure 18. Sequence of face detection examples on multispectral events from N-SpectralFace, through time. Each column is a different set
of input channels. From top to bottom, the frames are consecutive. Some samples are cropped for space constraints. Ground truths are in

red, predictions in green. Notice the different False positives and False negatives in the scene: the best model is BGR+IR. Best viewed in
color.



Figure 19. Mix of APS and EVS samples from the Real-SpectralFace dataset, with real multispectral events. Each column is a different set
of spectral bands, in order: GS, IR and GS+IR. Notice how APS IR have a better contrast than APS GS for face detection. Best viewed in
color.

(a) First sequence (b) Second sequence

Figure 20. Face detection examples from Real-SpectralFace in a scene that needs High Dynamic Range (HDR). Top: APS GS and APS
IR. Bottom: EVS GS and EVS IR. Notice how hard it is to distinguish the face in the APS samples, that is why it is never detected, while
with EVS the samples are clear, regardless of spectral the band. Best viewed in color.
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