
Supplementary Material
In the following section we provide further details regard-
ing the implementation and the empirical results reported
in the main paper.

A Pseudo-Label Generation
A.1 Timestamp label smoothing

As timestamps are located arbitrarily within action seg-
ments, it is reasonable to assume that adjacent temporal
locations are associated with the same action (on aver-
age). Hence, when solving the sparse system of linear
equations described at Equation (5) in the main paper,
we perform timestamp label smoothing on the timestamp
vector ya by applying a linear decay function to each non-
zero value over a specified window size.

In Table 1 we quantify the impact of the timestamp la-
bel smoothing and demonstrate a modest improvement in
performance at mid-values.

Dataset Smoothing window size
0 5 10 20 30

Accuracy

Breakfast 70.8 70.9 71.0 71.0 70.9
50Salads 80.5 80.6 80.7 80.5 80.2
GTEA 78.3 78.9 78.6 77.0 74.6

F1@10

Breakfast 96.5 96.5 96.6 96.7 96.6
50Salads 99.5 99.5 99.5 99.5 99.4
GTEA 97.3 97.5 96.0 95.9 94.0

Table 1: The impact of timestamp label smoothing.

A.2 Stand-alone random walk parameters

We evaluate the effectiveness of the proposed random
walk method in generating dense pseudo-labels from
timestamps. We examine the following hyper-parameter
ranges:

• Similarity method: {cosine, euclidean}

• Sharpening method: {exp, power}

• Sharpening factor β ∈ {10, 20, 30, 40}

• Laplacian neighborhood size K ∈ {0, 5, 15, 30}

• Timestamp label smoothing size L ∈
{0, 5, 10, 20, 30}

• Temporal prior weight γ ∈ {1e− 2, 1e− 3, 1e− 4}

When we consider the cosine similarity for the edge
weights, we use the following sharpening method:

w̃i,j , (fi·fj/||fi||·||fj ||)
β
.

We evaluate the performances of the above configura-
tions over the validation set (averaged over multiple cross
validation folds). The best configuration is as follows: we
use euclidean distance as our similarity method with exp
sharpening (as presented in Section 3.2 in the main pa-
per). We set β = 30, K = 15, γ = 1e − 3 and L = 10
for 50Salads/GTEA and L = 20 for Breakfast. The same
set of hyper-parameters is also used in Section 4.3.1 when
measuring the impact of the random walk parameters and
for the rest of the reported RWS training.

B Unified Random Walk
B.1 Training loss weights

When training RWS we scanned the following ranges of
α (truncated Laplacian smoothing weight) and δ (confi-
dence weight): {0, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2}. We
report results for the best performing models over the val-
idation folds. See Table 2 for the best performing loss
weights over the three datasets.

Dataset α δ

Breakfast 0.15 0.1
50Salads 0.075 0.075
GTEA 0.15 0.1

Table 2: The different losses weights for the three
datasets.

B.2 Impact of the random walk refinement mecha-
nism

The proposed unified training objective, RWS, utilizes
three random walk use-cases. In Table 3 we present the
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impact of the refinement mechanism. As seen, the refine-
ment is an important addition to the model performance
improving on average the F1, edit score and accuracy by
0.9, 0.5 and 1 points respectively.

Model F1@{10, 25, 50} Edit Acc

Breakfast

RWS w/o 69.2 63.1 45.3 70.5 58.0
RWS 70.9 64.7 44.8 71.1 60.2

50Salads

RWS w/o 75.1 71.2 54.2 67.8 69.6
RWS 76.7 72.8 55.5 69.3 70.0

GTEA

RWS w/o 80.6 73.4 55.9 76.9 58.9
RWS 80.9 74.1 56.3 76.2 59.3

Table 3: Comparing RWS with and without the random
walk refinement mechanism.
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