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Head pose Seen Unseen

w/o Separate Fusers 3.49° 5.10°
w/o Backbone Features 3.46° 5.20°
Proposed 3.50° 4.95°

Table 1. Ablation studies of learnable modules. We ablated the
separate weight of the Fusers and 3D Feature Extractor.

1. Detailed Ablation Studies

We perform ablation studies on several learnable mod-
ules of the proposed method to validate our design choice
on Fuser. The first row (w/o Separate Fusers) in Table 1
corresponds to a variant of the proposed method where the
Fusers in each block share the same weights. The model
in the second row (w/o Backbone Features) uses the initial
rotatable feature F(0) as input to Fusers instead of the back-
bone feature f . This model, therefore, does not distinguish
between rotatable and backbone features.

While both methods perform on par with the proposed
method under the seen setting, the proposed method shows
superiority in the unseen setting. One possible explanation
is that stacking different fusion blocks allows the model to
focus on different patterns depending on the depth of the
block and that the original backbone feature still contains
valuable information for appearance-based gaze estimation.

2. Visualization of Rotatable Features

In Fig. 1, we depict more Isomap embedding of the
initial rotatable features from test subjects. Each Isomap
embedding was generated from the features obtained from
each target participant, and all other visualization details
are consistent with the main paper. The visualization re-
sults confirm that the proposed method acquires person-
independent rotatable feature representations.

In Fig. 2, we also show more scatter plot visualizations of
the rotatable features from test subjects in the yaw-pitch co-

ordinate system. We can consistently observe the tendency
for feature distributions to converge before the first fusion
block and then diverge in later blocks across different sub-
jects. It can be seen that the proposed method dynamically
updates rotatable features even with a slight rotation (the
upper right example in Fig. 2).

3. Baseline Implementation Details
Unless otherwise noted, all baseline methods follow the

same training hyperparameters as used for the proposed
method in the main paper. We note that we did not tune the
hyperparameters in favor of the proposed method. Instead,
we used common choices, most of which already comply
with ResNet and PureGaze. With the Cyclic LR scheduler,
ResNet, PureGaze, and Hybrid-TR are less tuning demand-
ing. Therefore we tune the training-unstable DT-ED.

DT-ED Since we use a richer full-face patch instead of an
eye-region patch as input of DT-ED, we modified the ap-
pearance and gaze latent code sizes from 64 and 2 to 512
and 16. Following the original setting, we used angular loss
for gaze estimation and ℓ1 for reconstruction. For the learn-
ing rate, we found that the scaling and ramp-up settings in
the original paper make it difficult for the model to recon-
struct the target image. Therefore, we trained the model
with a base learning rate of 5 × 10−4 decaying by 0.8 ev-
ery 1 epoch, similar to another gaze redirection work [4].
Unlike other baselines, the batch size is set to 60.

Gaze-TR In our implementation, we used ResNet-50 [1]
to extract feature maps from the images. The size of the
feature map was 7 × 7 × 32, which is then fed to a six-
layer transformer. Finally, an MLP takes the feature vector
as input and estimates the gaze direction.

PureGaze When training models on both ETH-
XGaze [3] and MPII-NV [2] dataset, we used the
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Figure 1. Isomap embedding of the initial rotatable features. The
right side shows the example input samples. F

(0)
ref , F

(0)
tgt, and

RF
(0)
ref of the same sample are represented in the same color on

the left side plot.

default mask image in the official PureGaze repository 1

1https://github.com/yihuacheng/PureGaze

generated for normalized ETH-XGaze face images to
compute the adversarial reconstruction loss. For the extra
hyperparameters controlling the relative contribution of the
adversarial loss to the total loss, we followed the official
implementation.

4. Definition of the Rotation Matrix
As discussed in the paper, there are two approaches to

computing the relative rotation matrix R using either cam-
era calibration or head poses estimation. In the following,
we provide detailed explanations of two claims: 1) the final
R becomes the same in either approach, and 2) the rela-
tive translation t is uniquely determined by R and can be
ignored.

First, we show that the two definitions R = NtgtR̃N⊤
ref

and R = HtgtH
⊤
ref are interconvertible. Let us denote the

camera extrinsic parameters, i.e., the transformation from
the reference to the target camera coordinate systems, as
C ∈ R4×4. If we denote head poses in the original cam-
era coordinate systems before normalization as Ĥ ∈ R4×4,
their relationship can be defined as

Ĥtgt = CĤref . (1)

If we further denote an extended 4 × 4 normalization ma-
trix as N, the head poses H after normalization can also be
obtained from the normalization matrix as

H = NĤ. (2)

From Eq. 1 and Eq. 2, we can derive that

NtgtCN⊤
ref = NtgtĤtgtĤ

⊤
refN

⊤
ref

= (NtgtĤtgt)(NrefĤref)
⊤

= HtgtH
⊤
ref .

Therefore, we can conclude that the two definitions are in-
terconvertible and have the same meaning. Note that this
applies not only to the rotation component R but also to the
translation component t.

Next, we show that the translation component t is
uniquely determined by the rotation R under the assump-
tion of data normalization. One of the key properties of the
normalization process is that the origin of the gaze vector
is located at a fixed distance d on the z-axis of the camera
coordinate system. Therefore, this origin o = (0, 0, d, 1)⊤

does not move when the above transformation matrix is ap-
plied:

otgt =

(
R t
0 1

)
oref = oref . (3)

If we denote R = (rx, ry, rz) where rx, ry, rz ∈ R3 are
the column vectors of the rotation matrix, substituting this
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Figure 2. Scatter plot visualization of the rotatable features. Each of the D 3D vectors is represented in a pitch-yaw coordinate system.
Each row corresponds to the rotatable features at different fusion stages. Larger and yellower dots represent elements with a larger norm.

into Eq. 3 yields
0
0
d
1

 =

(
rx ry rz t

0 1

)
0
0
d
1


=

(
drz + t

1

)
.

Therefore, the translation component t is uniquely defined
by the fixed distance d and the rotation vector rz as

t =

0
0
d

− drz, (4)

and can be ignored in our problem setting.
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