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1. Experiments

1.1. Membership Inference Attacks

To conduct a membership inference attack (MIA), we
train 2 sets of models: 50 original models with full training
data and 50 retrained models with only the retaining dataset.
We then treat the attack as a binary classification problem on
model outputs of the forget dataset, where class 1 represents
the samples seen during training (i.e., from original models)
and class 0 represents the samples not seen during training
(i.e., from the retrained model). For this classification, we
use 40 models to extract a training set, 5 models to extract a
validation set, and 5 models to extract a test set. The feature
for MIA binary classifier comprises the softmax outputs of
the models and the one-hot vector representing the sample
class-label. We note that for class removal experiment, we
remove the row corresponding to the forgetten classes in the
MIA features. Subsequently, we train an XGBoost classifier
and fine-tune it to achieve the best F1 score on the valida-
tion set. Please refer to Figure 7 for more details. We vi-
sualize the Receiver Operating Characteristic (ROC) curve
and report the Area Under Curve (AUC). The ROC curve
illustrates the trade-off between the true-positive rate (TPR)
and the false-positive rate (FPR). In their study [1], the au-
thors focus on the extreme scenario of an exceedingly low
FPR. They argue that de-identifying even a small number of
users within a sensitive dataset is far more important than
saying an average-case statement “most people are proba-
bly not contained in the sensitive dataset”. Nevertheless,
in different contexts, such as when potential attackers seek
to ascertain whether a user has contributed their data to a
model’s training, indicating interest in a particular applica-
tion, the objective may change. Here, the goal is to iden-
tify as many data points (and their corresponding users) as
possible. Therefore, potentially tolerating a higher FPR to
achieve a higher TPR (i.e., Recall) is reasonable.

1.2. Ablation studies

1.2.1 Effect of γl

To assess the impact of γl on the efficacy of our unlearning
approach, we conducted experiments involving the removal
of 1,000 samples from the CIFAR-10 dataset (comprising
100 samples per class) using the SmallVGG model. In Ta-
ble 1, we present the classification error rates for the forgot-
ten dataset Df and the retained dataset Dr as we manipulate
the value of γl.

Our empirical findings indicate that our method remains
robust over a wide range of γl values. With a large γl (ap-
proximately 1, i.e., 0.99 or 0.995), the updating space, i.e.,
the Residual Gradient Space (RGS), is exceedingly small,
hindering the unlearning process. Consequently, the model
struggles to eliminate the information associated with the
forgotten dataset (lower classification error on forgetting
dataset). Conversely, when γl is too small (< 0.8), the
updating space becomes expansive and contains substantial
information about the retainning dataset, this results in a
drop in performance on both the retained dataset and the
test dataset undesirably. Furthermore, we note that as the
updating space is larger, the unlearning process is easier
to be over-fit, which could result in the Streisand Effect.
An appropriately γl facilitates the unlearning process while
preserving the information of the retained dataset intact.

1.2.2 Layers

In this section, we conduct experiments to assess the effi-
cacy of our proposed method when only unlearning specific
layers. In a manner akin to CFk [2], we freeze the first k
layers (the shallower layers), while we exclusively update
the deeper layers. More specifically, we conduct two set
of experiments: (i) SmallVGG model on CIFAR10 dataset
to forget 100 samples per class; and (ii) ResNet-18 model
on TinyImageNet dataset to forget the first 5 classes. Ex-
perimental results in Table 2 and Table 3 reveal that it is
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Table 1. Classification error of the forgetting Df and retaining Dr

dataset when forgetting 1000 samples of CIFAR-10 dataset using
SmallVGG model at different values of γl.

Classification Error
Df Dr Dtest

Retrain 9.61 0.00 9.62

γl

0.995 1.10 0.00 9.90
0.99 4.28 0.00 9.88
0.98 10.04 0.00 9.86
0.96 10.06 0.00 9.84
0.90 10.06 0.00 9.84
0.85 10.04 0.00 9.88
0.80 13.80 1.74 13.78
0.75 19.30 8.15 19.14

Table 2. AUC of the MIA ROC with different numbers of un-
learned layers of SmallVGG model for GPU and EUk.

Updating top-k PGU EUk

0 layer (No-Unlearn) 0.6590
1 layer 0.6554 0.6587
2 layers 0.5086 0.5587
3 layers 0.5087 0.5379
4 layers 0.5067 0.5168
5 layers (full model) 0.5070 0.5040

possible eliminate information of forgetting dataset retain-
ing in the model outputs by unlearning only a subset of lay-
ers instead of the whole models. Yet, the number of layers
which needs to update is depended on the architecture and
dataset. We will further investigate this problem in future
works. In comparison to EUk, simply retraining the last
few layers does not effectively remove information of the
forgetting dataset on the data removal task. While on the
class removal task, retraining the last few layers can be a
good approach.

1.2.3 Accuracy losses vs. AUC of MIA ROC

We also analyse the trade-off between accuracy losses in re-
taining training/testing dataset and the AUC of MIA ROC
curve. For the data removal task, from Figure 1 and Fig-
ure 3, we can observe that training for more epochs could
result in over-fitting for unlearning, which could result in
the Streisand Effect. More specifically, Figure 3c shows
that when unlearned model is over-fitted, a large number of
unlearned samples have very small MIA confidence scores.
This could be exploited by attackers to determine member-
ship. Hence, it is important to early stop to avoid over-
fitting. For the class-removal task, since we remove the

Table 3. AUC of the MIA ROC with different numbers of un-
learned layer blocks of ResNet-18 model for GPU and EUk. For
simplicity, we consider the first convolutional layer and the last
linear layer as a block.

Updating top-k PGU EUk

0 block (No-Unlearn) 0.7053
1 block 0.7035 0.5350
2 blocks 0.6063 0.5349
3 blocks 0.5409 0.5243
4 blocks 0.5395 0.5198
5 blocks 0.5393 0.5045
6 blocks (full model) 0.5392 0.5045

Figure 1. Accuracy loses (compared to the original model) of re-
taining training and testing dataset (left y-axis) and AUC of MIA
ROC curves (right y-axis) by epoch when unlearning 100 smaples
per class CIFAR-10 using SmallVGG.

rows corresponding to forgetting classes in the last linear
layer of unlearned models, we do not observe the Streisand
Effect as in data-removal task. The AUC of ROC curve
does not go lower than random level 0.5. Therefore, we can
achieve lower AUC of MIA ROC curve at the cost of more
losses in the accuracy of the retaining training and testing
dataset (and training time). However, it’s noteworthy that
the AUC remains relatively stable after a certain number of
training epochs, e.g., the 70th epoch in Figure 2, indicating
that prolonging training beyond this point does not yield
discernible benefits. In both experiments, we see that the
performance drops of retaining dataset and testing dataset
are quite small.

1.2.4 Incremental learning limitation

In this section, we conduct stress tests to analyze the point
at which our unlearning method fails, characterized by sig-
nificant accuracy drops on the test set. We conduct experi-
ments using AllCNN and SmallVGG on CIFAR-10 dataset
with the data removal task. We incrementally unlearn 25,
50, or 100 samples per class with the AllCNN model, and
100 samples per class with the SmallVGG model. Figure 5



Figure 2. Accuracy loses (compared to the original model) of re-
taining training and testing dataset (left y-axis) and AUC of MIA
ROC curves (right y-axis) by epoch when unlearning 5 classes of
TinyImageNet using ResNet-18.

Table 4. Test accuracy for different poisoning budgets for ResNet-
18 trained TinyImageNet. The ResNet-18 model achieves 48.18%
in test accuracy with full-clean training data. We present the ac-
curacy of the model trained with poisoned dataset (Poisoned), the
model trained with clean data only (exclude the poisoned samples)
(Clean), and the poisoned model after depoisoning using PGU.

Num. Poison 10K 20K 30K 40K 50K

Poisoned 44.06 39.76 34.42 28.70 22.40
Clean 46.40 45.30 43.90 42.34 39.48
PGU 45.38 44.34 43.60 42.50 41.14

shows that regardless of step sizes, AllCNN model starts to
fail after unlearning 400 samples per class (8% of training
size); while SmallVGG model starts to fail at 1100 sam-
ples per class (22% of training size). The SmallVGG model
fails at much larger number of forgetting samples than All-
CNN does potentially because SmallVGG model has more
parameters (5.7M) than AllCNN dose (1.6M). This allows
SmallVGG to be easily updated to remove information of
forgetting dataset. Nevertheless, in both models, we believe
that the forgetting dataset sizes are large enough for the life
cycle of a model and it is reasonable to retrain the model.
Finally, we note that we can easily recover the testing accu-
racy drops by fine-tuning the unlearned model on retaining
dataset; however, in this paper we mainly focus on the set-
ting that the training dataset may be no longer accessible.

1.3. Depoisoning

We conduct further experiments on the depoisoning set-
ting using ResNet-18 model on TinyImageNet dataset. The
experimental results in Table 4 again confirm effectiveness
of our method on mitigating the detrimental effects of poi-
soned samples on a larger model and dataset. Our method
can even achieve better test performance than the model that
is trained on the clean dataset only when a large number of
training dataset is poisoned.
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(a) Epoch 0 (Original) (b) Epoch 12 (Early stop point) (c) Epoch 40

Figure 3. Distributions of the MI attacker confidence scores of unlearned testing set (comprising unlearned and negative samples) during
unlearning 100 samples per class of CIFAR-10 using SmallVGG model at different time points: epoch 0 (original), epoch 12 (early stop
point) and epoch 40.

(a) Epoch 0 (Original) (b) Epoch 70 (c) Epoch 99

Figure 4. Distributions of the MI attacker confidence scores of unlearned testing set (comprising unlearned and negative samples) during
unlearning the first 5-classes of TinyImangeNet dataset using ResNet-18 model at different time points: epoch 0 (original), epoch 70 and
epoch 99.

Figure 5. Testing set accuracy of incremental unlearning with step
sizes of 25, 50, or 100 samples per class of CIFAR-10 using All-
CNN.

Figure 6. Testing set accuracy of incremental unlearn with step
size of 100 samples per class of CIFAR-10 using SmallVGG.



Figure 7. The Membership Inference Attacks (MIA) experiment comprises 4 stages; Stage 1: We train 2 sets of models using the full
training data (Positive models) and retrain data (Negative models). Stage 2: Given the forget data, we collect Positive samples and
Negative samples (softmax outputs of the model) from Positive models and Negative models respectively. The Positive and Negative
samples are used to train a binary classifier to detect whether a data point is used for training or not. Stage 3: From positive models,
we apply unlearning methods to obtain unlearnt models. Stage 4: Given the forget data, we then extract Test Positive, Test Negative
and Unlearnt samples. Test Positive and Test Negative samples are combined to form a balanced no-unlearn test set. Unlearnt and Test
Negative samples are combined to form a balance target test set. Note: Solid arrow lines indicate training process, dash arrow lines indicate
inferencing/testing process.
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