
Supplementary Material

A. Reproducibility

All source codes, figures, models, etc., are available at
https://github.com/PavlicLab/WACV2024-
Hong-Concept_Centric_Transformers.git.

B. Method Details

Algorithm. Algorithm 1 shows the details of the
Concept-Slot-Attention (CSA) module in our Cocenpt-
Centric Transformer (CCT) in pseudo-code. Algorithm 1
is described based on the SA [57], but we simplify it by re-
moving the last LayerNorm and MLP layers. Because of
the modular characteristics in our framework, we leverage
three slot-based approaches, including SA [57], I-SA [10],
and BO-QSA [41], which are interchangeable. We imple-
mented the above approaches based on their official reposi-
tories/works.

Positional Embedding for Concept Slots. Because the
resulting set of concept slots is orderless [57], it is difficult
for the later module to: (i) recognize which high-level con-
cept each concept slot is representing and (ii) identify which
concept slot each high-level concept belongs to. Thus, we
add a positional encoding pc to each concept slot to avoid
these challenges; in particular, ŝc = sc + pc. After this, the
concept embedding representation Ŝconcept ∈ RC×d with
positional embedding P is passed as the final concept rep-
resentation to the next module.

Algorithm 1 Concept-Slot-Attention (CSA) module. The
module receives the set of input features E ∈ RL×D;
the number of concepts C; and the dimension of con-
cepts d. The model parameters include: the linear projec-
tion qCSA, kCSA, vCSA with output dimension d; a GRU net-
work; a Gaussian distribution’s mean and diagonal covari-
ance µ, σ ∈ Rd.

Sconcept = Tensor(C, d) ▷ concept− slots ∈ RC×d

Sconcept ∼ N (µ, σ)
E = LayerNorm(E)
for t = 0, . . . , T do

Sconcept = LayerNorm(Sconcept)
ACSA = softmax( 1√

d
qCSA(Sconcept) ·

kCSA(E)⊤, axis =′ concept− slots′)
ACSA = ACSA / ACSA.sum(axis =′ inputs′)
U = ACSA · vCSA(E)
Sconcept = GRU(state = Sconcept, inputs = U)

end for
return Sconcept

Number of Iterations in the Concept Slot Attention
module. In the original usage of slot-based approaches,
the refinement could be repeated several times depending
on the tasks. For setting the number of iterations T (Al-
gorithm 1), we set the different number of iterations T for
the three slot-based methods we used. For the vanilla SA,
we set T to 1 because the initialization for slots in the SA
has some limitations revealed by [10], and we found that a
single iteration to update the concept slots benefits in which
the learned concept slots possess much information is per-
formed through the training with backpropagation. In other
words, our proposed interpretable broadcast scheme (4.2 in
the main text) contributes to better performances for the
SA than the internally refined iterations used in the con-
ventional slot-based methods. Furthermore, we set T to 3
for the BO-QSA and the I-SA by simply following the best
values of iterations in their works.

Comparison with Concept Transformers [65]. As
shown in [65, Fig. 1], Concept Transformers (CTs) are the
limited usage in our formulation, which leverages learn-
able vectors for concept learning instead of using “a shared
workspace”. We highlight that the concept embedding rep-
resentation in our CCT is more sophisticated and general-
izable than the one in CTs. Each concept embedding in
CT is represented as a simple learnable vector shared with
all input batches to learn. As such, it may be difficult for
the vector to capture which image features can contribute to
each concept more than others. For instance, as shown in
Fig. 2 in the main text, given three images belonging to the
same class “Winter Wren”, the image features with the same
spatial positions from each image can have different impor-
tance for providing information to learn the same global
concept, such as “what is the main body color for Winter
Wren?” or “what is the body shape for it?”. In contrast,
our proposed module naturally aggregates how much each
image feature contributes to each concept using the atten-
tion ACSA (See in Algorithm 1) and provides batch-specific
concept embedding representations that have more seman-
tically meaningful information. In all of the experiments,
we demonstrate that our CCTs always outperform CTs.

C. Further Experimental Results and Details

In this section, we explain further experimental results
and details. All experiments are conducted with three dif-
ferent random seeds and 95% confidence intervals.

C.1. Dataset Statistics

Table A-1 depicts the statistics of all benchmark datasets
in our experiments. Because all datasets have no portion of
validation, we manually pick the portion of the validation
dataset for exploring the best hyperparameters for models.

https://github.com/PavlicLab/WACV2024-Hong-Concept_Centric_Transformers.git
https://github.com/PavlicLab/WACV2024-Hong-Concept_Centric_Transformers.git


For CIFAR-100 Super-class dataset, it serves as a no-
table example for nuanced image categorization. Originat-
ing from the original CIFAR-100 dataset, it contains 100
fine-grained image classes that are aggregated into 20 dis-
tinct super-classes for broader categorization. For instance,
the super-class ”vehicles 1” comprises specific, fine-grained
classes like ”bicycle,” ”bus,” ”motorcycle,” ”pickup truck,”
and ”train.” This structured hierarchy makes the dataset a
widely used benchmark in evaluating deep learning mod-
els, particularly those that incorporate logical constraints.

For CUB-200-2011, we explain the pre-processing
steps following [65]. Initially, the dataset has 312 binary
attributes, but we filter to retain only those attributes that
occur in at least 45% of all samples in a given class and
occur in at least 8 classes. Thus, we get a total of 108
attributes, and based on this, we group them into two
kinds of concepts: spatial and global concepts. We finally
get 13 global and 95 spatial concepts by looking at each
attribute. For example, has shape::perching-like
and has primary color::black are global
concepts, and has eye color::black and
has forehead color::yellow are spatial con-
cepts.

For the ImageNet dataset, we adopted the methodology
presented in [84] to validate our CCT’s ability to learn la-
tent concepts without the need for explicit concept expla-
nations. [84] uses attention maps to identify a predefined
set of concepts within the dataset, focusing on the first 200
classes of ImageNet for their evaluation. Following this ap-
proach, we also utilized the first 200 classes in ImageNet
for training and conducted evaluations to determine test ac-
curacy on the ImageNet dataset. This experiment serves to
benchmark our CCT model’s capabilities in learning latent
concepts without explicit explanations, further showcasing
its effectiveness in an unsupervised setting.

C.2. Hardware Specification of The Server

The hardware specification of the server that we used to
experiment is as follows:

• CPU: Intel® CoreTM i7-6950X CPU @ 3.00GHz (up
to 3.50 GHz)

• RAM: 128 GB (DDR4 2400MHz)

• GPU: NVIDIA GeForce Titan Xp GP102 (Pascal ar-
chitecture, 3840 CUDA Cores @ 1.6 GHz, 384-bit bus
width, 12 GB GDDR G5X memory)

C.3. Model Architectures

We leverage three kinds of backbones, including Vision
Transformers (ViT) [22], Swin Transformers (Swin) [55],
and ConvNeXt [56]. We employ timm Python library sup-
ported by Hugging Face™.

Variants of ViT. In our experiments, we use three variants
of Vision Transformer (ViT), ViT-Large, ViT-Small,
and ViT-Tiny (vit large patch16 224,
vit small patch16 224, and vit tiny patch16
224, respectively in timm). These variants are defined by

their number of encoder blocks, the number of attention
heads on each block, and the dimension of the hidden layer.
The ViT-Large has 24 encoder blocks with 16 heads,
and the dimension of the hidden layer is 1024. In addition,
The Vit-Small has 12 encoder blocks with 6 heads,
and the dimension of the hidden layer is 384. Finally, the
ViT-Tiny has 12 encoder blocks with 3 heads, and the
dimension of the hidden layer is 192, which is much more
lightweight. A comparison between the variants of the ViT
is shown in Table A-2.

Architecture of Swin-Large. In our experi-
ment, we use the Swin Transformer (Swin)-
Large (swin large patch4 window7 224
.ms in22k in timm). See Table A-3 for the overall
architecture of Swin-Large.

Architecture of ConvNeXt-Large. In our experiment,
we leverage ConvNeXt-Large (convnext large
.fb in22k ft in1k in timm). See Table A-4 for the
overall architecture of ConvNeXt-Large.

C.4. CIFAR100 Super-class Experiments

The Difference Between CCT and Other Deep-Learning
Approaches with Logical Constraints. The logical con-
straint by [23] to address this task was introduced, i.e., once
the model classifies an image into a class, the predicted
probabilities of that super-class must first arrive at the whole
mass. Referring to this, several deep-learning approaches
leverage it [34, 51]. For instance, the five classes, baby,
boy, girl, man, and woman, belong to the super-class people.
Thus, Prpeople(x) = 1 if x is classified as baby. So, logical
constraints can be formulated as ∧s∈superclass(Prs(x) =
0 ∨ Prs(x) = 1), where the probability of the super-class
is the sum of its corresponding classes’ probabilities, e.g.,
Prpeople(x) = Prbaby(x)+ Prboy(x)+ Prgirl(x)+ Prman(x)+
Prwoman(x).

However, because our CCT (and CT) follows Proposi-
tion 1 in [65], the probability of choosing the preferred su-
perclass is sc = argmaxs(βc)s of class c (Refer to Eq.(2)
in the main text). This means the super-class is determined
by the largest attention score of the class among all classes,
which is different from the definition of the logical con-
straint above.

Additional Results. Figure A-1 showcases several exam-
ples of correct predictions by CT and our CCT, highlighting
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Table A-1. Benchmark Dataset Statistics. † indicates the rescaled size of inputs for the ViT backbone, which is different from the original
sizes of the datasets. For the ImageNet experiment setup, we follow [84].

Dataset CIFAR100 Super-class CUB-200-2011 ImageNet

Input size 3× 28× 28 3× 224× 224† 3× 224× 224†

# Classes 20 (super-class) 200 (bird species) 200 (objects)

# Concepts 100 (class) 13 (global), 95 (spatial) 50 (latent spatial)

# Training samples 55,000 5,994 255,224

# Validation samples 5,000 1,000 10,000

# Test samples 10,000 4,794 20,000

Model Layers Hidden Dim. Heads # Params.

ViT-Tiny 12 192 3 5M

ViT-Small 12 384 6 22M

ViT-Large 24 1024 16 304 M

Table A-2. Comparison between variants of the ViT [22]

Model Layers (per stage) Hidden Dim. Attention Heads # Params.

Swin-Large (2, 2, 18, 2) 192 6 197M

Table A-3. Overall architecture of the Swin Transformer [55]

Model Conv. Layers (per block) Hidden Dim. Attention Heads # Params.

ConvNeXt-Large 2 512 16 50M

Table A-4. Overall architecture of the ConvNeXt [56]

that compared to CT, our CCT achieves sparser explanation
attention scores, which indicates a more confident and ro-
bust degree of belief for decision-making.

Hyperparameter Settings. For the experimental results,
including Table 1 and Fig. 3 in the main text, referring
to [23], we first find the best experimental setups of both
ViT-Tiny and CT because they have not been evaluated on
CIFAR100 Super-class before. Once the hyperparameter
setup for the ViT-Tiny backbone is found to achieve simi-
lar performance to the Wide ResNet (the backbone for the
second baseline group), we apply the same hyperparame-
ter setting to both CT and our CCT. Table A-5a presents all
shared hyperparameters for ViT-Tiny, CT, and all configura-
tions of CCT. Please refer to Table A-6 for hyperparameter
settings used in our baseline experiments.

C.5. CUB-200-2011 Experiments

Additional Results with Comparison with CT. With
concept explanations, we introduce additional experimental
results to compare predictions between CT and our CCT.

Figure A-2 depicts a case where the CT’s predictions
were utterly different from each other despite all im-
ages having the same class. The predicted classes from
the CT in Fig. A-2 were Prothonotary Warbler,
Pine Warbler, and Magnolia Warbler, respec-
tively. The only difference between the first two pre-
dictions that the CT made is whether the spatial con-
cept has under tail color::black exists, indicat-
ing the CT’s performance sensitivity. In addition, the third
prediction from the CT contains new spatial concepts un-
related to the first two examples, which shows analytical
uncertainty as to why the CT made such a decision. In
contrast, the predictions made by our CCT were all correct,
with consistent global explanations. This indicates that al-
though incorporating spatial concepts provide additional in-



Figure A-1. Examples of correct predictions by CT and CCT on CIFAR100 super-class. The 100 classes are indexed from 1 (top left in
10x10 grid) to 100 (bottom right in 10x10 grid).

formation, determining robust global concepts is more im-
portant for the classification task.

Figure A-3 shows some examples where our CCT out-
performs CT to classify Olive sided Flycatcher.
All CT’s predictions were Western Wood Pewee,
and this is caused by their spatial explana-
tions, including has eye color::black and
has leg color::black. We discovered that these two
spatial attributes are critical for Western Wood Pewee,
and thus mislead the model’s predictions. In contrast,
the explanations achieved by CCT are more robust and
consistent.

Finally, Figs. A-4 and A-5 demonstrate the failure cases
where both CCT and CT predict incorrectly. In both mod-
els, noise caused by spatial explanations common in some
classes tends to impair the performance of prediction re-
sults. However, compared to CT, our proposed CCT cap-
tures richer global explanations, which thus helps to achieve
better classification performance in general.

Hyperparameter Settings. We follow the official imple-
mentation of CT and produce the experimental results, in-
cluding Table 2, Fig. 4, in the main text, Fig. A-2, and
Fig. A-3 in Appendix. The only difference in hyperparam-
eter settings between our CCT and CT is the learning rate
for the AdamW optimizer, 5e-5 for CT, 1e-5 for the con-
figurations with the ViT-Large backbone of our CCT, 2e-5
for our CCT with SwinT-Large, and 5e-5 for our CCT with
ConvNeXt-Large. Table A-5c shows the shared hyperpa-
rameters for both approaches. For those baselines not listed
in Table A-5c, we refer directly to the data presented in their
respective publications.

Conceptual Visualization For an in-depth look into the
learnt concepts within CUB-200-2011 dataset, we adapted
our CCT model to 50 distinct classes and 20 latent concepts
following [84]. A comprehensive visualization of these re-
fined latent concepts can be viewed in Figure A-6, A-7 and
A-8. Please note that we present these visualization results
without providing concept explanations.

In the CUB-200-2011 dataset, our model’s first concept



Figure A-2. Prediction comparison between CT and our CCT. (Top) CT’s predictions are incorrect. (Bottom) All predictions are correct
by our CCT.

Figure A-3. Prediction comparison between CT and CCT. (Top Row) CT’s predictions are incorrect. The purple highlighted explanations
are key attributes in Western Wood Pewee. (Bottom Row) All predictions are correct by our CCT.

Figure A-4. The example of failure predictions of both CT (Top Row) and CCT (Bottom Row).

highlights key features of birds such as their head and beak
area. Concept 2 focuses on the contours of seagulls by em-
phasizing the background. Concept 3 considers multiple
features like the beak, eyes, and tail, while Concept 4 iso-
lates birds from complex backgrounds. Similarly, Concept
5 outlines the bird’s entire body. Concept 6 specializes in
highlighting the body area of yellow-bodied birds, and Con-

cept 7 zeroes in on the beak and upper torso. Concept 8 not
only highlights contours but also focuses on the bird’s eye
area. Concepts 9 and 10 share similarities with Concept
8, emphasizing the eye region. Concept 11 stands out by
focusing on the head area of red parrots, which is also a
feature that catches human attention. Concepts 12 and 13
are dedicated to the bird’s feet and lower body areas, re-



Figure A-5. The example of failure predictions of both CT (Top Row) and CCT (Bottom Row).

spectively. Concept 14 traces the entire body of a seagull,
whereas Concept 15 captures the contours of birds in flying
poses. Concept 16, on the other hand, focuses on the con-
tours of birds in sitting poses. Concept 17 centers on the
eye and mid-body regions, while Concept 18 partially cap-
tures key features of long-necked birds. Concept 19 cap-
tures unique head and feather structures. Finally, Concept
20 perfectly outlines the bird’s contour.

These results demonstrate the model’s ability to focus on
a wide range of features, from beaks and eyes to tails and
feet, reinforcing its classification skills. This is particularly
remarkable in an environment where explicit concept ex-
planations are unavailable, highlighting another dimension
where our model excels over others.

Image Retrieval and Clustering. In addition to its ro-
bust classification capabilities, our CCT model excels in the
realm of image retrieval. Remarkably, the model achieves
this without requiring explicit explanations for the 20 la-
tent concepts it identifies within the CUB-200-2011 dataset.
This intuitive clustering of images based on inherent fea-
tures—ranging from the contours of seagulls to the unique
features of a red parrot’s head—demonstrates another di-
mension in which our model surpasses others in the field.
Essentially, it clusters semantically related images based on
these latent concepts, offering coherent results even in an
environment where we don’t have access to concept expla-
nation. For instance, images featuring parrots are clustered
together, driven by Concept 11’s focus on the head area of
red parrots. Similarly, images of seagulls are grouped to-
gether, guided by Concept 2’s emphasis on seagull contours.

Ablation Study. In Figure A-9, we can infer that the
CCT’s performance is sensitive to the explanation lambda
hyperparameter λexpl (4.3 in the main text). There seems
to be an optimal range for explanation lambda, somewhere
between 0 and 10, within which the model performs best.

Values of λexpl higher than 10 lead to progressively worse
performance, with severe degradation observed at the high-
est values of lambda tested.

In Figure A-10, we can infer that a lower learning rate
of 1.00e-4 provides the best model performance, especially
when the explanation lambda λexpl is set to 0.0. As the
learning rate increases, the model’s accuracy deteriorates
significantly. The extremely low accuracy at higher learn-
ing rates (1.00e-01 and 1.00e+00) suggests that the model
is unable to learn effectively, likely overshooting the opti-
mal values during training due to too large updates to the
model’s parameters.

C.6. ImageNet Experiments

Experiment Design. To further confirm CCT’s capabil-
ity to derive latent concepts autonomously, we conducted
an experiment on the ImageNet dataset, adhering to the
methodology described in [84]. We chose ViT-S as
our backbone architecture, avoiding models with more
than 45M parameters, such as ResNet-101, Swin-S, and
ConvNeXt-S.

Conceptual Visualization. For an in-depth look into the
learnt concepts, we tailored our CCT model to 20 classes
and 10 latent concepts, as in [84]. Figure A-11 provides a
detailed visualization of these latent concepts. Please note
that we present these visualizaton results without providing
concept explanations.

The first concept our model identifies focuses on jelly
shellfish, specifically isolating the contours of these crea-
tures against their natural backgrounds. The second concept
turns its attention towards chickens, particularly emphasiz-
ing the distinct red comb atop their heads. Following this,
the third concept excels in separating the various compo-
nents of fish species, effectively delineating between differ-
ent parts such as fins, scales, and tails. Moving to marine
life, the fourth concept aims to concentrate on the facial at-
tributes of dolphins and sharks, with a particular focus on



Figure A-6. From left to right, the image displays Concepts 1 through 20 as identified in the CUB-200-2011 dataset following [84]. Each
pair of images consists of the masked version (with attention activation mask) on the left and the original image on the right. For better
visual representation, see A-7 and A-8.

Figure A-7. First 10 concepts (1-10) in CUB-200-2011

their mouths. The fifth concept takes this a step further by
specifically highlighting the regions around the oral cavities
of sharks, setting them apart from other parts of the crea-
ture. In a similar aquatic vein, the sixth concept outlines
the unique shapes and contours of goldfish, capturing their
form effectively. The seventh concept diverges by focusing
solely on the feet of birds, whether they are perched or in
flight. This is complemented by the eighth concept, which
takes a broader approach to birds by concentrating on their
ventral regions, capturing details such as feathers and un-

derbellies. The ninth concept specializes in ostriches, par-
ticularly focusing on the distinct features that make up their
head region. Finally, the tenth concept zeroes in on hens.
It particularly focuses on isolating their contours against a
variety of backgrounds, thereby allowing for a clearer un-
derstanding of the hen’s form and structure.

These visualizations demonstrate CCT’s unparalleled
ability to focus on semantically meaningful aspects of the
images.



Figure A-8. Second 10 concepts (11-20) in CUB-200-2011

Figure A-9. Performance comparison of CCTs on CUB-200-2011
with different value of explanation lambda λexpl.

Figure A-10. Performance comparison of CCTs on CUB-200-
2011 with different value of learning rates under different expla-
nation lambda values.

Image Retrieval and Clustering. In addition to identify-
ing intricate latent concepts, our CCT model demonstrates
exceptional capabilities in image retrieval tasks. As illus-
trated in Fig. A-11, the model is adept at clustering im-
ages that share semantic similarities, thereby reinforcing its
utility in generating semantically coherent results. Notably,
our CCT achieves this level of clustering without any need
for explicit concept explanations. This sets it apart from
other models in the field, as it can intuitively group images

based on the inherent features recognized through the latent
concepts, ranging from the contours of jelly shellfish to the
unique features of an ostrich’s head. This ability to clus-
ter semantically related images without detailed conceptual
guidance emphasizes another aspect where our model ex-
cels over others in the domain.

Hyperparameter Settings. We follow the official imple-
mentation of CT and produce the experimental results, in-
cluding Table 3 in the main text.

The only difference in hyperparameter settings between
our CCT, CT, and the vanilla ViT-S is the learning rate for
the AdamW optimizer. For the vanilla ViT-S, the learning
rate is 0.0001. For CT, the learning rate is 5e-5, following
that in their CUB-200-2011 experiments. For our CCT, the
learning rate is 0.0001. Table A-5d shows the shared hyper-
parameters for the vanilla ViT-S, CT, and all configurations
of our CCT. Please refer to the Table A-6 for hyperparame-
ter settings used in our baseline experiments.

Limitations of Prototype-based Methods. The observa-
tion from testing prototype-based models such as ProtoP-
Former, ProtoPool, ProtoPNet, and Deform-ProtoPNet on
ImageNet yielded some interesting results. While we ini-
tially reported outcomes for only the first 200 labels of
ImageNet in Table 3, in line with the methodology from
[84], it was necessary for us to reduce the number of proto-
types per instance—a critical hyperparameter for prototype
based model—due to computational constraints, whereas
our transformer-based model, CCT, managed the task with-
out issue. We hypothesize that this limitation arises from
the inherent design of prototype-based models, which uti-
lize ’prototypes’ to offer interpretability to the decision-
making processes of complex machine learning models in
areas such as image classification, object detection, or seg-
mentation. It can be a trivial issue when the size of dataset is
small, however, as the complexity of the dataset increases,



Figure A-11. All 10 concepts (1-10) in ImageNet dataset following [84]

Figure A-12. Performance comparison on ImageNet with different
number of labels.

such as with ImageNet, which contains millions of images
across thousands of categories, the number of prototypes
required to effectively represent all classes grows. This
growth demands significantly more memory and computa-
tional resources, particularly GPU RAM, to store and pro-
cess these prototypes during both training and inference.

Additional Experimental Results. Fig. A-12 shows the
experimental results on ImageNet with different number of
labels to train vanilla ViT-S and CCT. We tested both mod-
els with the same hyperparameter setting in the main text,
and selected the best configuration of CCT, using BO-QSA.
Even though the number of latent concepts in CCT is 50 fol-
lowing [84], CCT mostly outperformed the pretrained back-
bone. When the number of labels is enormous (≥ 800), the
performance of CCT is similar to or worse than that of the
backbone. This is typical because the number of 50 latent
concepts we set is insufficient to process all labels.

Figure A-13. Performance comparison of CCTs on ImageNet with
different number of latent concepts. The dashed blue line indicates
the test accuracy of vanilla ViT-S.

Therefore, we performed an additional experiment on
ImageNet using a total of 1000 classes and different num-
bers of latent concepts for CCT. Fig. A-13 demonstrates the
performance comparison of CCTs depending on the number
of latent concepts. When the number of concepts is set to
150, CCT outperformed the vanilla ViT-S (the dashed blue
line), indicating the contribution of setting the number of
latent concepts to the performance of CCT.

D. Limitations

In this section, we explain the limitations of our proposed
approach.

First, because of the CCT’s architectural characteristics
in Section 4 in the main text, the proposed approach en-
forces additive contributions from the user-customized con-
cepts to the classification probabilities. In other words, we
ignore the latent higher-order relations among the concepts.



Name Value

Batch size 64
Epochs 20

Warmup Iters. 10
Learning rate 5e-5

Explanation loss λ 1.0
Weight decay 1e-3

Attention sparsity 0.5

(a) ViT-Tiny, CT and all configurations of CCT on
CIFAR100 Super-class

Name Value

Epochs 60
Learning Rate 1e-4

Number of classes 20
Number of concepts 10

Quantity Bias 0.1
Distinctiveness Bias 0.05

Consistence Bias 0.01
Weak Supervision Bias 0.1

(b) For botCL on CIFAR100 Super-class

Name Value

Batch size 16
Epochs 50

Warmup Iters. 10
Explanation loss λ 1.0

Weight decay 1e-3
Attention sparsity 0.5

(c) For both CT and all configurations of CCT on
CUB-200-2011

Name Value

Batch size 256
Epochs 10

Warmup Iters. 10
Explanation loss λ 0.

Weight decay 1e-3
Attention sparsity 0.

(d) For both CT and all configurations of CCT on
ImageNet

Table A-5. Shared hyperparameters on different datasets.

For instance, in our CUB-200-2011 experiments, we as-
sumed that global and spatial concepts could be represented
and learned parallelly in our framework and that there is
no correlation between the global concept and the spatial
concept, which is independent. However, this is limited
because more complex relationships, such as hierarchical
properties, can exist among them. It might be addressed
by introducing refined architectural properties in our CCT.
For example, the Bi-directional Recurrent Unit can be in-

Name CIFAR100 ImageNet

Batch size 64 16
Epochs 10 10

Freeze Epochs 10 10
Pre-train Epochs 0 0

Weight decay 0.0 0.0
LR (prototypes weights) 5e-2 5e-2

LR (backbone) 5e-4 5e-4

(a) For PIP-Net on CIFAR100 and ImageNet, LR
stands for Learning Rate

Name CIFAR100 ImageNet

Batch size 64 64
Epochs 50 10

Warmup Learning Rate 1e-4 1e-4
Feature Learning Rate 4e-4 4e-4

Prototype Learning Rate 3e-3 3e-3
Number of Prototype 2000 2000

(b) For ProtoPFormer on CIFAR100 and Ima-
geNet

Name CIFAR100 ImageNet

Batch size 80 80
Epochs 30 20

Learning Rate 1e-3 1e-3
Gumbel Time 30 30

Number of Classes 20 200
Number of Prototype 202 202

Prototype Depth 256 256

(c) For ProtoPool on CIFAR100 and ImageNet

Name CIFAR100 ImageNet

Batch size 80 80
Epochs 100 100

Learning Rates default default
Number of Classes 20 200

Number of Prototype 100 200

(d) For Deformable-ProtoPNet on CIFAR100 and
ImageNet

Name CIFAR100 ImageNet

Batch size 80 80
Epochs 100 100

Learning Rates default default
Number of Classes 20 200

Number of Prototype 1000 2000

(e) For ProtoPNet on CIFAR100 and ImageNet

Table A-6. Shared hyperparameters on different datasets.

troduced to allow global and spatial concepts to learn each
other’s conceptual influences.

Secondly, although, in the experiments of CUB-200-
2011 and ImageNet without using explanations, we demon-



strate that our CCT can visualize the learned semantic con-
cepts, we acknowledge that our CCT might be integrated
with more sophisticated losses to achieve better visualiza-
tion of the learned concepts. For example, [90] leverages
losses, including reconstruction, contrastive losses, and var-
ious regularizers, to enforce the individual consistency and
mutual distinctness of concepts. In our future research, we
might use those losses and regularizers to allow our model
to achieve better visualization capabilities.
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