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1. Appendix

1.1. Proofs

1.1.1 Orthogonal Gradients

Prior to providing proofs for the adversarial dimensions, we
demonstrate that gradients for disjoint classifiers are always
orthogonal to each other. We will use this for our later re-
sults. Given input space X and class-label space Y , we have
n disjoint classifiers F1, ...,Fn. If T is the DCT transfor-
mation matrix, we can define Ti to be the transformation
matrix for the classifier Fi. Each matrix Ti has a lot of ze-
ros. Only the rows corresponding to the unmasked frequen-
cies of classifier Fi have non-zero entries. Moreover, since
no frequency is shared by any two classifiers, the jth row
will have non-zero entries in exactly one of the n disjoint
transformation matrices, i.e. TiT

⊺
j = O ∀i ̸= j.

Next, the n disjoint classifiers F1, ...,Fn, where Fi :
Tix → y, are trained using loss functions LF1

, ...,LFn
re-

spectively. Now, the dot product between the gradients of
classifiers Fi and Fj is given by

(∇xLFi
)
⊺ (∇xLFj

)
= (T ⊺

i ∇TixLFi
)
⊺ (

T ⊺
j ∇TjxLFj

)
= (∇TixLFi)

⊺
TiT

⊺
j

(
∇TjxLFj

)
= 0

(1)

1.1.2 Proof of Lemma 3.1

From [2], we know that for a classifier F : X → Y where
X ∈ Rd is the input space and Y is the finite class la-
bel space, the dimension of the adversarial subspace around
input-label pair (x, y) where x ∈ X and y ∈ Y , is approx-
imated by the maximal number of orthogonal perturbations
r1, r2, ..., rk such that ||ri||2 ≤ ϵ and g⊺ri ≥ γ ∀ 1 ≤
i ≤ k. Here, g = ∇xL(F(x), y) and γ is the increase in
loss function L sufficient to cause a mis-classification. [2]

*Indicates equal contribution

provide a tight bound for k:

k = min

(
d,

⌊
ϵ2||g||22
γ2

⌋)
(2)

We now extend this result for n disjoint classifiers. Let

g′ =

n∑
j=1

gj

n .
Now, for at-least-one voting,

g′⊺ri =

n∑
j=1

gj
⊺ri

n
≥

n∑
j=1

γj

n
∀ 1 ≤ i ≤ k (3)

Applying the result from [2] (Equation 2) on the above
inequality (Equation 3), we get:

k = min

d,


ϵ2n2||g′||22(

n∑
j=1

γj

)2





= min

d,


ϵ2

n∑
j=1

||gj||22(
n∑

j=1

γj

)2



 .

(since gi
⊺gj = 0 ∀i ̸= j, using Equation 1)

(4)

Now, for majority voting, we again apply the results
from [2] (Equation 2). However, the derivation now de-
pends on the selection of

⌈
n
2

⌉
models that the adversary

chooses to target. To obtain the lower and upper bounds, we
can select

⌈
n
2

⌉
with the most and least adversarial dimen-

sions respectively. Following a similar derivation as before,
we get :
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k ≥ min

d,
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1.1.3 Proof of Lemma 3.2

Follow up work from [1] also provides a tight bound for
the adversarial dimension in the ℓ∞ case. They provide
a tight bound for the number of k orthogonal perturba-
tions r1, ..., rk ∈ Rd such that ||ri||∞ ≤ ϵ, given by
sign(g)⊺ri =

ϵd√
k
∀1 ≤ i ≤ k where sign(g) is the signed

gradient.
We now extend this result for n disjoint classifiers.

For g′ =

n∑
j=1

gj

n , since gj
′s are non-zero only on non-

overlapping dimensions, we can see that sign(g′)⊺r =
n∑

j=1

sign(gj)
⊺r ∀r ∈ Rd. Applying the above results here,

we get

n∑
j=1

sign(gj)
⊺ri =

ϵd√
k
∀1 ≤ i ≤ k (7)

Now, similar to [1], we compute the perturbation mag-
nitude along a random permutation of the signed gradient.
For each 1 ≤ j ≤ n and 1 ≤ i ≤ k, we get :

E[gj
⊺ri] = E

[
d∑

p=1

|g(p)j | · sign(g(p)j ) · r(p)i

]

=

d∑
p=1

|g(p)j |E
[
sign(g

(p)
j ) · r(p)i

]
=

ϵ||gj||1
n
√
k

(8)

1.2. Saliency Distribution

Saliency of a feature may be viewed as a heuristic mea-
sure of its “robustness”, as larger saliencies imply that the
model is more sensitive to perturbations of that frequency.
Figure 2 plots the distribution of absolute saliency values
for D4 (SIZE=1) and D4 (SIZE=4) ensembles. We observe

Detector LDM DDIM PNDM ProGAN

CNNDet 66% (100%) 64% (100%) 67% (100%) 97% (100%)
D4 (SIZE=4) 93% (28%) 79% (4%) 93% (33%) 73% (68%)

Both 93% (29%) 79% (4%) 93% (33%) 83% (64%)

Table 1. Generalization of CNNDet (trained on ProGAN) and
D4 (SIZE=4) (trained on LDM) to CelebaHQ diffusion and GAN
deepfakes that were unseen during training. Results are presented
in the following format: non-adversarial AP (ASR).

that saliencies for saliency-partitioning configurations D4
(SIZE=4) are of relatively lower values, and are sharply
concentrated around their mode, implying higher feature
robustness. This can be attributed to the round-robin, equal
distribution of robust frequencies amongst the constituent
models. Improved approaches to saliency partitioning could
increase this separation, improving model robustness even
further. We leave this exploration to future work.

1.3. Generalization to Unseen Image Domains and
Unseen Generative Models

Tab. 1 presents the generalization results, but for the
CelebaHQ dataset.

1.4. Frequency Distribution

D4 partitions frequency features based on saliency.
In Fig. 1, we plot how these partitions are distributed among
low or high frequencies for a D4 (SIZE=4) ensemble. Since
an image has a 2-dimensional frequency spectrum, we look
at four quadrants of the spectrum corresponding to low
and high frequency regions for each axis. We observe that
saliency based partitioning also leads to a uniform distribu-
tion of low and high frequency features.

1.5. Applicability to domains other than deepfake
detection.

We presented D4 as a framework for adversarially robust
deepfake detection. However, we hypothesize that this ap-
proach may apply to other classification tasks that exhibit
redundancy in a feature space. While we are unaware of
such a space for the popular CIFAR10 and ImageNet clas-
sification tasks, there are several classification tasks in, say,
the audio domain that exhibit redundancy in features, e.g.,
keyword spotting and fake speech detection. Exploring this
hypothesis is an interesting future research direction.
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Figure 1. Distribution of partitioned frequencies for D4 (SIZE=4)
among low and high frequency regions for each axis of the spec-
trum.
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Figure 2. Distribution of frequency feature saliencies for D4
(SIZE=1) and D4 (SIZE=4) ensembles. Lower saliency implies
higher feature robustness.
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