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Figure 1. Ground truth segmentation mask and corresponding
connected components. The connected components are assumed
to give a lower bound on the number of instances; e.g., the illus-
trated image contains 6 people but the number of connected com-
ponents that corresponds to person is only 3.

1. Implementation Details

1.1. Semantic Segmentation

As mentioned in our main paper, for experiments in-
volving semantic segmentation, we add our SGR compo-
nent at the end of the final layer of backbones, which are
pre-trained on ImageNet, before passing the processed fea-
tures with added global context to appropriate segmentation
heads. For the Dilated FCN [2] and DeeplabV3 [2] heads,
we use a multi-grid approach with dilated convolutions for
Resnet backbones during training. The last two downsam-
pling layers are removed, resulting in an output stride of 8.
For the Swin-T [9] backbone with UperNet [11], we add the
SGR component after the final Swin-T layer.

The models using Dilated-FCN and DeepLabV3 as seg-
mentation heads are trained using the SGD optimizer with
a momentum [10] of 0.9 and a weight decay of 0.0001. We
train on the Cityscapes dataset with an initial learning rate
of 0.006 and the ADE-20K [14] and Coco-Stuffs-10K [1]

datasets with an initial learning rate of 0.004.
For the Maskformer [5] and Mask2Former [4] heads, we

do not use multi-grid or dilated convolution (as mentioned
in the paper); hence the output features have a resolution
which is 32 times smaller than the input features. The out-
puts of contextualized features along with rest of the layers
are passed to UperNet [11] head for segmentation. For both
Maskformer [5] and UperNet [11], we used the AdamW
optimizer. For Maskformer [5] and Mask2former [4] mod-
els we use the optimizers, learning rate and weight decay
hyper-parameters as mentioned in the respective papers.

For all experiments, during training, we applied random
horizontal flips, random scaling between [0.5-2.0] and ran-
dom color jitter following [5,12] for data augmentation. For
Cityscapes [6], following the random data augmentation,
the images are cropped from the center with a crop size
of 768 × 768. For both ADE-20K [14] and Coco-Stuffs-
10K [1] a center crop of crop size 512×512 is used follow-
ing the abovementioned random image transformations dur-
ing training. We train models on Cityscapes using a batch
size of 8 and on the other two datasets using a batch size of
16. When trained across multiple GPUs, we apply synchro-
nized batchnorm [13] to synchronize batch statistics follow-
ing existing work [2, 3, 5, 7, 12]. We train on Cityscapes,
COCO-Stuffs-10K, and ADE-20K for 240 epochs, 140
epochs and 120 epochs respectively. For all experiments,
we used a polynomial learning rate policy where the learn-
ing rate decreases with the formula (1 − iter

total iter )
0.9 with

every iteration.
For models with Resnet backbones the initial base learn-

ing rate is multiplied by a factor of 10.0 for the parameters
of the SGR component and the layers that correspond to the
segmentation head. For the Swin-T backbone we use the
same learning rate for both the backbone and segmentation
head.

For all three datasets, we report both the single scale
inference and multi-scale inference with horizontal flip at
scales 0.5, 0.75, 1.0, 1.25, 1.5 and 1.75 following existing
work [2, 5, 7, 12]. During multi-scale inference, the final
output is calculated by taking the mean probabilities over
each scale and their corresponding flipped inputs. Follow-
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Figure 2. Visualization of instance- and class-level histograms. (Left) Image with ground truth instances of ”things” classes. (2nd
Column) Two different concept regions aggregating information. (3rd Column) Instance-level histograms. (Right) Class-level histograms.
P (w) indicates the probability that weight of a concept region belongs to a particular concept. While the bottom token captures a good
class-level semantics, on instance-level the semantics are poor.

ing [5, 7, 12], for ADE-20K and COCO-Stuffs, we resize
the shorter side of the image to the crop size followed by a
center crop to ensure that all images are of the same size.

Hyper-parameters for training. For Hungarian match-
ing, in training, we used ρ = 1.0 for dice loss (see Eq. (5) in
the main paper). For matching, as mentioned in the paper,
the value of L is set to 64. Hence, the top L = 64 tokens are
matched using the greedy matching approach based on the
cost matrix (Figure 3 of the main paper). Once matched, we
used a weight of 0.25 for the hyperparameter β that controls
the importance of binary mask losses with respect to cross-
entropy loss or mask classification loss (depending on the
framework we use) to train the models (see Eq. (7)).

1.2. Transfer to Downstream Tasks

For transfer to the downstream tasks, we removed the
segmentation head from our semantic segmentation net-
work trained on COCO-Stuffs-10K and use it as a back-
bone for Mask-RCNN [8] to fine-tune on the MS-COCO
train2017 subset, which has 118K images, for object de-
tection and instance segmentation. The same approach was
adopted while transferring the GloRE [3] based backbone
pretrained for segmentation on COCO-Stuffs-10K. For the
Res101-C4 backbone, however, we used the weights pre-
trained for classification on Imagenet. We reported our re-
sults on the val2017 subset having 5K images. The au-
thors of Mask-RCNN used a batch size of 16 and trained on
the trainval-135K subset and reported results on the
minival dataset which is the same as val2017. There-
fore, for a fair comparison with other backbones, we trained
them from scratch on MS-COCO train2017 using the
same batch size, learning rate and iterations. We used a
batch size of 8, an initial learning rate of 0.02, and used
SGD with a momentum of 0.9 and weight decay of 0.0001

to train the models. We trained for 270K iterations with a
learning rate decreased by 0.1 at 210K and 250K iterations.
Following Mask-RCNN [8], the RPN anchors span 5 scales
and 3 aspect ratios. For all the reported backbones, 512
ROIs are sampled with a positive to negative ratio 1:3.

2. Ground Truth connected components
Figure 1 shows the result of applying connected compo-

nent analysis on ground truth semantic segmentation masks.
As can be seen in the figure, the class person is divided
into three different components. There are altogether 6 peo-
ple in total. Hence, we observe that generally connected
components form a lower bound on the number of instances.
Similarly, the “stuffs” class ground is divided into two
different components and the class banana has only one
component. For “stuffs” classes the notion of instances is
not well defined, but connected components serve as a good
proxy for disjoint regions that are often semantically mean-
ingful within the scene.

3. Visualization of histograms for tokens
Figure 2 shows the visualization of class-level and

instance-level histograms for two different tokens, which
we use to compute class- and instance-level semantics met-
ric (defined in the main text). The lower the entropy of each
of these histograms, the more semantically meaningful the
tokens are at class or instance level of granularity. As can
be observed in Figure 2, the first token has high instance
and class level semantics since it mostly aggregates infor-
mation from a single car, in this case, car 7. The lower
token, despite being highly semantic at class-level (having
lower entropy at class-level), is poor at capturing instance-
level semantics. Hence, a token which is semantic at an



Figure 3. Qualitative results on COCO-Stuffs-10K. The leftmost two columns correspond to the image and ground truth semantic
segmentation; the third column shows the predictions of the Dilated-FCN head; the fourth column shows the predictions of our SGR
component added with Dilated-FCN [2]; the fifth column shows predictions from Maskformer [5] and the last column shows the predictions
of our model added on top of Maskformer. The colors representing the class are also shown below the images.



Figure 4. Qualitative results on Cityscapes. The leftmost two columns correspond to the image and ground truth semantic segmentation;
the third column shows the predictions of Dilated-FCN+GCNET [3]; the four column shows predictions from Maskformer [5] and the
final column shows predictions of our SGR component on top of Dilated-FCN. Red rectangles on the images indicate locations where the
models failed to correctly segment the pixels.

instance-level is also highly semantic at class-level but not
the other way around.

Method FLOPs mIOU(m.s)

Dil-FCN [14] w/o SGR 224G 38.9
w SGR 236G (+12G) 39.7 (+0.8)

MaskFormer [19] w/o SGR 75G 39.3
w SGR 80G (+5G) 39.9 (+0.6)

Table 1. Computation Overhead for adding SGR. Flops com-
puted for Image size of 512 × 512.

K L mIOU (m.s.) Sc Dc SI DI
512 64 39.7 0.226 0.389 0.315 0.316
512 32 39.6 0.242 0.364 0.344 0.284
256 64 39.5 0.222 0.399 0.317 0.314
256 32 39.7 0.236 0.376 0.329 0.297
128 64 39.8 0.231 0.383 0.325 0.302

Table 2. Ablation for different values of K and L. All experi-
ments on Dil-FCN+SGR with R101 backbone

4. Computation Overhead and Hyper-
parameter sensitivity

Table 1 below shows the computational overhead for our
component. As can be seen, adding the SGR component
consistently gives a performance boost at minimal compu-
tational burden regardless the type of framework.

We have performed an ablation for different values of K
(number of tokens) and L (number of tokens matched) in
Table 2 to analyze the sensitivity of our component to those
hyper-parameters. As we observe, the performance of our
component is not sensitive to exact values of K and L.

5. Qualitative Results

5.1. Semantic Segmentation

Qualitative Results on COCO-Stuffs-10K Figure 3 shows
the qualitative result of semantic segmentation of on
COCO-Stuffs-10K. In the first image, we observe that
adding our component over Dil-FCN improves overall seg-
mentation quality. When compared to Maskformer, our
model generally misclassifies trees for plant-other, how-
ever it produces a consistent mask for fence. In fact, the
ground truth is noisy in this case because there is clearly a
barbed-wire fence in the image. Maskformer was able to
capture the fence to a degree but produced an inconsistent
map. For the second image, all methods misclassified the
upper portion of the image as sky instead of snow. Com-
pared to Dilated FCN, our component has much higher in-
tersection over tree, person and ski classes. Maskformer
makes consistent predictions however it has misclassified
ski as snow-board at multiple locations. In the third image,
adding the SGR component over Dilated FCN clearly pro-
duces more accurate segmentation. Maskformer misclas-
sifies microwave and the walls and textile, which adding
the SGR component improves. You can also observe that
adding the SGR component also produces more consistent
masks compared to Maskformer. For the fourth image, we
can observe a general improvement over dilated FCN. Both
Maskformer and our SGR + Maskformer perform poorly
on this particular image. In the final image, Dilated FCN
misclassified certain poriton of the gravel as ground-other
and has generally poor intersection elsewhere (particularly
for sky and hill) compared to SGR + Dilated FCN. Mask-
former has incorrectly classified the gravel as ground-other
and cannot segment the hill class properly. Adding SGR



Figure 5. Qualitative results for downstream tasks of object detection and instance segmentation on MS-COCO. The leftmost two
columns correspond to the image and ground truth object locations and their corresponding segmentation; the center column shows the
predictions of using our backbone; the rightmost two columns show predictions from using Res101-C4 and Res101-GloRE [3] backbones.

over Maskformer leads to better segmentation of hill al-
though there is still misclassification of gravel as road.
Qualitative Results on Cityscapes. Figure 4 shows the
qualitative results of semantic segmentation on Cityscapes.
The red rectangles indicate locations where each of the
models made incorrect predictions. In the first image, the
dilated FCN misclassified the road sign and side of the pave-
ment (rightmost corner). Both of our models (Dil-FCN
+SGR and DeeplabV3+SGR) alleviate those mistakes –
DeeplabV3+SGR is more accurate. Maskformer has made
incorrect classification of sky, car and pavement. We can
see similar trends in the rest of the two images where our
models produce more consistent and accurate predictions.

5.2. Object Detection and Instance Segmentation

Figure 3 shows the qualitative result of object detection
and instance segmentation of using our pre-trained back-
bone in Mask-RCNN [8] on MS-COCO, compared to pre-
trained Res101-C4 and Res101-GloRE [3] backbones. In
the first image, the other two backbones mis-classified the
leftmost elephant as a personwhich we correctly iden-
tify and segment. Moreover, they missed the rightmost in-
stance of the elephant which model using our backbone
was able to detect. Overall segmentation quality of each
elephant was also better for our backbone. In the second
image, other backbones erroneously classified the lamp



on the left as parking meter. This is likely due to
the lack of global reasoning needed to make a distinction
between these two objects within the context of the scene
that our backbone contains. Both of them also missed the
backpack of the person on the right. The model using our
backbone consistently identifies objects and segments them
better.

In the third image, our backbone segments the couches
better than the other backbones. In the fourth image, the in-
stance segmentation of the person is better than the other
two backbones. Moreover, the Res101-C4 backbone has
missed the handbag altogether, while the Res-101-GloRE
backbone cannot segment the handbag properly. In the
final image, the Res-101-C4 backbone incorrectly labelled
US flag as a chair. Besides, the instance segmentation
quality is lower than our backbone. The Res-101-GloRE
failed to identify the truck completely, identifying part of
of it as motorcycle and inaccurately segmented it. The
general quality of object segmentation is also worse. All
these qualitative results demonstrate the fact that our SGR
component, due to instance-like supervision through con-
nected components, learns richer features that when trans-
ferred to downstream tasks improve performance in object
detection and instance segmentation.
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